K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)

\(\Leftrightarrow P=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\) (Vì: \(x-y=1\))

\(\Leftrightarrow P=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)

\(\Leftrightarrow P=\left(x^4-y^4\right)\left(x^4+y^4\right)-x^8+y^8+1\)

\(\Leftrightarrow P=x^8-y^8-x^8+y^8+1\)

\(\Leftrightarrow P=1\)

11 tháng 8 2021

bài bạn làm hơi sai

5 tháng 8 2020

a, (y-x^2)^2:(y-x^2) =y-x^2

b, (x-y^2)^2:(y-x^2)=x-y^2

học tốt

5 tháng 8 2020

Bài làm:

a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)

\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)

\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)

\(=y-x^2\)

b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)

\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)

\(=x-y^2\)

18 tháng 8 2017

Ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

Dấu = xảy ra khi .... Làm tiếp nhé

18 tháng 8 2017

ta có: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)=> \(\frac{bx^4+ay^4}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\) (vì x^2 +y^2 =1)

=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(ab\left(x^4+2x^2y^2+y^4\right)\)

=>\(abx^4+b^2x^4+aby^4+a^2y^4\)   =  \(abx^4+2abx^2y^2+aby^4\)

=> \(b^2x^4-2abx^2y^2+a^2y^4=0\)

=>\(\left(bx^2-ay^2\right)^2=0\)=>\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

=> \(\frac{x^{2012}}{a^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\) và \(\frac{y^{2012}}{b^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\)

=>\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)

8 tháng 8 2017

bạn viết có thánh đọc ra á :v

8 tháng 8 2017

Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó

2 tháng 9 2017

\(.\)M= bn ghi lại đề nha ^.^

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)

\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)

k cho mình nha bn thanks nhìu <3 <3       (^3^)

2 tháng 9 2017

2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)

Đặt \(x^2+5x+4=t\)

(1) = \(t.\left(t+2\right)-24\)

\(=t^2+2t+1-25\)

\(=\left(t+1\right)^2-25\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)(2)

Thay \(t=x^2+5x+4\)vào (2) ta có:

(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

k mình nha bn <3 thanks

2 tháng 9 2020

Bài 5 là quá kiểu hiển nhiên roài phá ra là xong mà :))))))

Bài 6:

\(A=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\) 

\(B=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

\(C=\left(2x-7\right)^2=\left(2.2-7\right)^2=\left(4-7\right)^2=\left(-3\right)^2=9\)

Bài 1:

a) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)(Đpcm)

b) \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)(Đpcm)

Bài 2:

a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)

b)\(25x^2-30x+9=\left(5x\right)^2-2.5.3x+3^2=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

c)\(4x^2-28x+49=\left(2x\right)^2-2.2.7x+7^2=\left(2x-7\right)^2=\left(2.4-7\right)^2=1^2\)