Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Vì \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)
\(\Rightarrow x=y=z=\sqrt[2017]{3}\)
\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3=0\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3=0\)
=>3(x+y)(y+z)(x+z)=0
=>(x+y)(y+z)(x+z)=0
\(\left(x^{11}+y^{11}\right)\left(y^7+z^7\right)\left(x^{2017}+z^{2017}\right)\)
\(=\left(x+y\right)\cdot A\cdot\left(y+z\right)\cdot B\cdot\left(x+z\right)\cdot C\)
=0