Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\\xy+xz+yz=-\dfrac{1}{2}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x^4+y^4+z^4+2\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]=1\\xy+xz+yz=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2+2\left[xyz\left(x+y+z\right)\right]=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4.\dfrac{1}{4}\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow2\left(x^4+y^4+z^4\right)=2-1=1\)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)
\(\Rightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=45\)
\(\Rightarrow x^2+y^2-2xy=9\)
\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)
\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)
Vậy...
Theo BĐT Cosi ta có: \(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4\cdot y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4\cdot z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4\cdot x^4}=x^2z^2\end{cases}\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2}\)
chứng minh tương tự: \(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge3xyz\)(do x+y+z=3)
Do đó: \(x^4+y^4+z^4\ge3xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^4;y^4=z^4;z^4=x^4\\x^2y^2=y^2z^2;y^2z^2=z^2x^2;z^2x^2=x^2y^2\end{cases}\Leftrightarrow x=y=z}\)(1)
mà x+y+z=3 (2)
Từ (1) và (2) => 3x=3 => x=1 => y=z=1
=> \(x^{2018}+y^{2019}+x^{2020}=1+1+1=3\)
mình sửa đề nhé~
Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2xz\ge0\forall x;y;z\)
\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)\ge2xy+2yz+2xz\forall x;y;z\)
\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2xy+2yz+2xz\forall x;y;z\)
\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\forall x;y;z\)
Mà \(3.\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)
Có: \(x^{2018}+y^{2018}+z^{2018}=27^{673}\)
\(\Leftrightarrow3.x^{2018}=27^{673}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
đến đây bạn tự làm nốt nhé
Lời giải:
Ta có:
\(x^3+y^3+z^3=3xyz\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)
Vì \(x+y+z\neq 0\Rightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\)
\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\). Dấu bằng xảy ra khi
\((x-y)^2=(y-z)^2=(z-x)^2=0\Leftrightarrow x=y=z\)
Khi đó:
\(P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+1)(1+1)(1+1)=8\)
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)