K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)

Vậy ta được đpcm

31 tháng 3 2017

x2-yz=a=>ax=x(x2-yz)=x3-xyz

tương tự và cộng lại ta có ax+by+cz=x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)=(x+y+z)(a+b+c) 

ta có đpcm

2 tháng 7 2016

Sửa đề thành vầy mới làm dc bạn\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz+c^2y^2=0\)

\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)


\(\Rightarrow ay-bx=0,az-cx=0,bz-cy=0\)

\(\Rightarrow ay=bx,az=cx,bz=cy\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y},\frac{a}{x}=\frac{c}{z},\frac{b}{y}=\frac{c}{z}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(dpcm\right)\)

Chúc bạn học tốt . Chọn cho mình nha cảm ơn 

năm nay mình mới lên lớp 6

17 tháng 7 2017

Bài 1:

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow-a^2+2ab-b^2=0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)=0\Leftrightarrow-\left(a-b\right)^2\le0\)

Khi \(a=b\)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)