K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

\(x+y+z+\sqrt{xyz}=4\)

\(\Leftrightarrow xyz=\left(4-x-y-z\right)^2\)

\(\Leftrightarrow xyz=16+x^2+y^2+z^2-8x-8y-8z+2xy+2xz+yz\)

\(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{16x-4xy-4xz+xyz}\)

\(=\sqrt{16x-4xy-4xz+16+x^2+y^2+z^2-8x-8y-8z+2xy+2yz+2xz}\)

\(=\sqrt{8x-2xy-2xz+2yz+x^2+y^2+z^2-8y-8z+16}\)

\(=\sqrt{\left(-x+y+z-4\right)^2}=\left|y+z-x-4\right|=\left|y+z-x-\left(x+y+z+\sqrt{xyz}\right)\right|\)

\(=\left|-2x-\sqrt{xyz}\right|=2x+\sqrt{xyz}\) (Vì x > 0)

Tương tự : \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\) , \(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Suy ra \(B=2x+2y+2z+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)

22 tháng 6 2017

thay xyz=(4-x-y-z)2vào

10 tháng 9 2018

Ta có \(x+y+z+\sqrt{xyz}=4\Rightarrow4x+4y+4z+4\sqrt{xyz}=16\)

Ta lại có \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}=2x+\sqrt{xyz}\)

Tương tự \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\)

\(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Suy ra \(P=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2x+2y+2z+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)

8 tháng 7 2019

Ta có

\(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left[4\left(4-y-z\right)+yz\right]}\)

                                             \(=\sqrt{x\left(4\left(x+\sqrt{xyz}\right)+yz\right)}\)

                                             \(=\sqrt{4x^2+4x\sqrt{xyz}+xyz}\)

                                              \(=2x+\sqrt{xyz}\)

Khi đó \(T=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2.4=8\)

27 tháng 6 2018

Ta có \(4x+4y+4z+4\sqrt{xyz}=16\Rightarrow4x+4\sqrt{xyz}+yz=yz-4y-4z+16\)

=> \(\left(2\sqrt{x}+\sqrt{yz}\right)^2=\left(4-y\right)\left(4-z\right)\Rightarrow\sqrt{\left(4-y\right)\left(4-z\right)}=2\sqrt{x}+\sqrt{yz}\)

=> \(\sqrt{x}\sqrt{\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

Tương tự, rồi cộng lại, ta có 

\(S=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=8\)

Vậy S=8 

^_^

16 tháng 9 2015

Từ giả thiết \(4x+4y+4z+4\sqrt{xyz}=16\to4x+4\sqrt{xyz}+yz=16-4\left(y+z\right)+yz=\left(4-y\right)\left(4-z\right)\). Suy ra \(\left(4-y\right)\left(4-z\right)=\left(2\sqrt{x}+\sqrt{yz}\right)^2\to\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

Tương tự ta thiết lập hai đẳng thức nữa \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz},\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}.\)  

Cộng lại ta được

\(A=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2\times4=8.\) 

Vậy \(A=8.\)

3 tháng 2 2020

Ta có: \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{z\left[4\left(4-y-z\right)+yz\right]}\)

\(=\sqrt{x\left[4\left(x+\sqrt{xyz}\right)+yz\right]}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=2x+\sqrt{xyz}\)

Tương tự ta có: \(\sqrt{y\left(4-z\right)\left(4-z\right)}=2y+\sqrt{xyz}\)

Và: \(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Từ trên:

\(\Rightarrow T=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}\)

\(=2\left(x+y+z+\sqrt{xyz}\right)\)

\(=8\)