K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\ge3\)mới chứng minh được

28 tháng 4 2019

@Trần Thùy Linh nói đúng đề rồi nhé

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)

Áp dụng bđt Cauchy cho 3 số không âm :

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{xyz}}=3\sqrt[3]{1}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=x=1\)

26 tháng 6 2016

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{x+z}+1\right)+\left(\frac{z}{x+y}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}-3=\left(x+y+z\right).\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(x+z\right)\right]\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\left(đpcm\right)\)

26 tháng 6 2016

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

Áp dụng Cô-Si cho các số không âm:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2;\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2;\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

Cộng theo vế các bất đẳng thức ta được: \(\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\ge2+2+2=6\)

Xem lại đề...............

28 tháng 9 2016

mk không bít

28 tháng 9 2016

ai đây

NV
4 tháng 5 2020

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Dấu "=" xảy ra khi \(x=y=z\)

Hoặc:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế với vế ta có đpcm

27 tháng 4 2019

áp dụng bất đẳng thức cô si cho 3 số dương 

Với x, y,z>0 : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\frac{y}{z}\frac{z}{x}}=3\sqrt[3]{1}=3.\) :

Dấu '=' xảy ra khi \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Leftrightarrow x=y=z\)

5 tháng 4 2019

P/s: BĐT AM-GM là ra thôi bạn :D

Áp dụng AM-GM cho các số không âm, ta có:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z\)