Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)
Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x-1\le0,y-1\le0,z-1\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị
\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)
(Nó có hơi dài dòng)
Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =
(x-z)^3= (2020 - 2022)^3 = -8
8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.
Vì (x-z)^3 = -8
8(x-y)^2.(y-z) = -8
==> (x-z)^3 = 8(x-y)^2.(y-z)
Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)
Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)
Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)
1. Ta có: x2 \(\ge\)0 => x2 + 2 \(\ge\)2 \(\forall\)x => (x2 + 2)2 \(\ge\)4 \(\forall\)x
3|x - y + 1| \(\ge\)0 \(\forall\)x;y
=> 2021 - (x2 + 2)2 - 3|x - y + 1| \(\le\)2021 - 4 = 2017
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x^2+2\right)^2=4\\x-y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x^2+2-2\right)\left(x^2+2+2\right)=0\\y=x+1\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Vậy Max A = 2017 <=> x = 0 và y = 1
2. Ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
=> \(\frac{y+z-x+2x}{x}=\frac{z+x-y+2y}{y}=\frac{z+y-z+2z}{z}\)
=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\) => x = y = z
Khi đó, ta được : A = \(\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Đặt\(\frac{x}{2019}=\frac{y}{2020}=\frac{z}{2021}=k\Rightarrow\hept{\begin{cases}x=2019k\\y=2020k\\z=2021k\end{cases}}\)
Khi đó (x - y)2 = (2019k - 2020k)2 = (-k)2 = k2 (1)
\(\frac{\left(x-z\right)\left(y-z\right)}{2}=\frac{\left(2019k-2021k\right)\left(2020k-2021k\right)}{2}=\frac{\left(-2k\right).\left(-k\right)}{2}=\frac{2k^2}{2}=k^2\)(2)
Từ (1) và (2) => đpcm
Mình nhầm xíu :
Tính giá trị của biểu thức :
P = x2015 + y2015 + z2015
Ko sai bạn ey
{ x + y + z = 1 (1)
{ x² + y² + z² = 1 (2)
{ x³ + y³ + z³ = 1 (3)
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0
(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x)
⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0
⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0
@ Nếu x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0
⇒ S = 1
Tương tự cho trường hợp y + z = 0 và z + x = 0