Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Aki Tsuki Mysterious Person Phùng Khánh Linh Nhã DoanhQuoc Tran Anh Le Nguyễn Thị Ngọc Thơ lê thị hương giang giúp mình vs
a) \(x\ne yvàx;y>0\)
ta có : \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y\)
\(\Leftrightarrow P=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y\)
\(\Leftrightarrow P=\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)-y\)
\(\Leftrightarrow P=2\sqrt{y}-y\)
b) ta có : \(P-1=2\sqrt{y}-y-1=-\left(\sqrt{y}-1\right)^2\le0\)
\(\Rightarrow P\le1\)
bài này không thể chứng minh \(P< 1\) đc .
ĐKXĐ: x≠y,x>0,y>0
a) \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y=\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-y=2\sqrt{y}-y\)b) Ta có \(\left(\sqrt{y}-1\right)^2>0\Leftrightarrow y-2\sqrt{y}+1>0\Leftrightarrow1>2\sqrt{y}-y\Leftrightarrow P< 1\)
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)
\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)
\(=\dfrac{1}{2\sqrt{2}a}\)
\(=\dfrac{\sqrt{2}}{4a}\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
chịu đấy :v
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)
\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)
\(=\dfrac{-x+1+x^2}{x-3}\)
d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)
\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\sqrt{x^2}\)
\(=4x-2\sqrt{x}+x\)
\(=5x-2\sqrt{2}\)
\(P=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1-xy}\right):\left(\frac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\left(\frac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\frac{\left(x+1\right)\left(y+1\right)}{1-xy}\right)\)
\(=\frac{2\sqrt{x}\left(y+1\right)}{\left(1-xy\right)}.\frac{\left(1-xy\right)}{\left(x+1\right)\left(y+1\right)}=\frac{2\sqrt{x}}{x+1}\)
\(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}-1\)
\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\frac{2+6\sqrt{3}}{13}\)
Ta có \(1-P=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{\left(\sqrt{x}-1\right)^2}{x+1}\ge0\) \(\forall x\ge0\)
\(\Rightarrow1-P\ge0\Rightarrow P\le1\)