K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Cả 2 vế của bất đẳng thức đều ko âm nên ta có :

\(\left(|x|+|y|\right)^2\ge|x+y|^2\)

\(\Leftrightarrow\left(|x|+|y|\right)\left(|x|+|y|\right)\ge\left(x+y\right)\left(x+y\right)\)

\(\Leftrightarrow x^2+2.|x|.|y|+y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow|x|.|y|\ge xy\)(luôn đúng \(\forall x,y\inℚ\))

Vậy bất đẳng thức trên đúng => đpcm

Dấu "=" xảy ra \(\Leftrightarrow|xy|=xy\)\(\Leftrightarrow x,y\)cùng dấu

5 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y}=\dfrac{u}{v}=\dfrac{x-u}{y-v}\)

\(\Rightarrow x\left(y-v\right)=y\left(x-u\right)\)

Mà x > y

\(\Rightarrow y-v< x-u\)

\(\Rightarrow x+v>y+u\left(đpcm\right)\)

Vậy...

5 tháng 6 2017

ta có:\(x>y>u>v\)

\(\Rightarrow x^2>y^2>u^2>v^2\)

giả sử x+v>y+u là đúng

\(\Rightarrow\left(x+v\right)^2>\left(y+u\right)^2\\ \Leftrightarrow x^2+v^2+2xv>y^2+u^2+2yu\\ \Leftrightarrow x^2-y^2+v^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow x^2-x^2+u^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow yu-xv=0\\ \Leftrightarrow yu=xv\\ \Rightarrow\dfrac{x}{y}=\dfrac{u}{v}\left(đúng\right)\)

do đó: \(x+v>y+u\) đúng.

25 tháng 2 2020

Ta có : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+\left|2xy\right|+y^2\)

\(\Leftrightarrow2xy\le\left|2xy\right|\) ( luôn đúng )

20 tháng 8 2018

giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y 

giai gium minh voi. bạn viết dấu giùm mik nhé

9 tháng 11 2016

a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)

Bình phương 2 vế của (1) ta được:

\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)

\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)

Dấu = khi \(xy\ge0\)

b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)

Áp dụng câu a ta có:

\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)

Suy ra đpcm

c: Để y<0 thì x<0

d: Để y min thì x max

=>x=12