Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y}=\dfrac{u}{v}=\dfrac{x-u}{y-v}\)
\(\Rightarrow x\left(y-v\right)=y\left(x-u\right)\)
Mà x > y
\(\Rightarrow y-v< x-u\)
\(\Rightarrow x+v>y+u\left(đpcm\right)\)
Vậy...
ta có:\(x>y>u>v\)
\(\Rightarrow x^2>y^2>u^2>v^2\)
giả sử x+v>y+u là đúng
\(\Rightarrow\left(x+v\right)^2>\left(y+u\right)^2\\ \Leftrightarrow x^2+v^2+2xv>y^2+u^2+2yu\\ \Leftrightarrow x^2-y^2+v^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow x^2-x^2+u^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow yu-xv=0\\ \Leftrightarrow yu=xv\\ \Rightarrow\dfrac{x}{y}=\dfrac{u}{v}\left(đúng\right)\)
do đó: \(x+v>y+u\) đúng.
Ta có : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+\left|2xy\right|+y^2\)
\(\Leftrightarrow2xy\le\left|2xy\right|\) ( luôn đúng )
giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y
giai gium minh voi. bạn viết dấu giùm mik nhé
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)
Bình phương 2 vế của (1) ta được:
\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)
Dấu = khi \(xy\ge0\)
b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)
Áp dụng câu a ta có:
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)
Suy ra đpcm
Cả 2 vế của bất đẳng thức đều ko âm nên ta có :
\(\left(|x|+|y|\right)^2\ge|x+y|^2\)
\(\Leftrightarrow\left(|x|+|y|\right)\left(|x|+|y|\right)\ge\left(x+y\right)\left(x+y\right)\)
\(\Leftrightarrow x^2+2.|x|.|y|+y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow|x|.|y|\ge xy\)(luôn đúng \(\forall x,y\inℚ\))
Vậy bất đẳng thức trên đúng => đpcm
Dấu "=" xảy ra \(\Leftrightarrow|xy|=xy\)\(\Leftrightarrow x,y\)cùng dấu