K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b) \(B=x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2.\left(-12\right)=1-\left(-24\right)=25\)

c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

29 tháng 7 2019

d, D = x3 + y3 = ( x + y)3 - 3xy( x + y) = -1 - 36 = -37

a) \(A=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

b) \(B=x^2+y^2=x^2-y^2+2xy-2xy=\left(x-y\right)^2+2xy=9+2.10=29\)

c) \(C=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

d) \(D=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=-27+3.10.\left(-3\right)=-27-90=-117\)

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

5 tháng 8 2018

\(A=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(B=x^2+y^2=\left(x-y\right)^2+2xy=9+10.2=29\)

\(C=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(D=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(-3\right)\left[x^2-2xy+y^2+3xy\right]=\left(-3\right)\left(\left(-3\right)^2.3.10\right)=-3.270=-810\)

cam on ban nhieu

19 tháng 10 2019

a ) có \(x^2+y^2+4x-2xy+4y+2019=\left(x-y\right)^2+4\left(x-y\right)+2019=49+28+2019=2096\)

b) \(x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=343-49=294\)

c)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)=x^3-y^3+x^2+y^2+xy-3x^2y+3xy^2-3xy=\left(x-y\right)^3+\left(x-y\right)^2=343+49=392\)

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

14 tháng 9 2020

\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)

\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)

\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)

\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)

\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)

\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)

14 tháng 9 2020

A = x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 13 - 3xy.0

= 1 - 0 = 1

Vậy A = 1

b) B = x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1 + 0 = 1

Vậy B = 1

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Vậy M = 1

d) x + y = 2

⇔ ( x + y )2 = 4

⇔ x2 + 2xy + y2 = 4

⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )

⇔ 2xy = -6

⇔ xy = -3

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

            = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

            = ( x + y )3 - 3xy( x + y )

            = 23 - 3.(-3).(2)

            = 8 + 18 = 26

8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum