Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Dự đoán điểm rơi x = 1;y = 2 và làm thôi:3
Ta có: \(G=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)
\(\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=\left(x+\frac{1}{x}\right)+\left(6y+\frac{24}{y}\right)+x+2y-9\)
\(\ge2\sqrt{x.\frac{1}{x}}+2\sqrt{6y.\frac{24}{y}}+x+2y\ge2+24+5-9=22\)
Dấu "=" xảy ra khi x = 1;y=2
Vậy \(G_{min}=22\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
CÁCH 1 :\(x+2y=3\Rightarrow x=3-2y\)
Ta có \(E=x^2+y^2=\left(3-2y\right)^2+y^2\)
\(=9-12y+4y^2+y^2\)
\(=5y^2-12y+9\)
\(=5\left(y^2-2.\frac{6}{5}.y+\frac{36}{25}\right)+\frac{9}{5}\)
\(=5.\left(y-\frac{6}{5}\right)^2+\frac{9}{5}\)
Vì \(5.\left(y-\frac{6}{5}\right)^2\ge0\forall y\) nên \(5\left(y-\frac{6}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)
Dấu bằng xảy ra khi và chỉ khi \(\left(y-\frac{6}{5}\right)^2=0\Leftrightarrow y=\frac{6}{5}\)
và \(x=3-2y=3-\frac{12}{5}=\frac{3}{5}\)
Vậy giá trị nhỏ nhất của E là \(\frac{9}{5}\)\(\Leftrightarrow x=\frac{3}{5}\)và\(y=\frac{6}{5}\)
Áp dụng BDT Bunhacopxki ta có
\(\left(x+2y\right)^2\le\left(x^2+y^2\right)\left(1^2+2^2\right)\)
\(\Leftrightarrow\)\(3^2\) \(\le5\left(x^2+y^2\right)\)
\(\Leftrightarrow\) \(x^2+y^2\ge\frac{9}{5}\)
Bạn tự chỉ ra dấu bằng như ở cách 1 nha