K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bunhia chỉ có h/s giỏi học thôi.

x+3y\(\ge\) 1 <=> x\(\ge\) 1-3y

<=> x2+y2 \(\ge\) (1-3y)2+y2

Ta có: (1-3y)2+y2=1-6y+9y2+y2=10y2-6y+1=10(y2-0,6y+0,1)=10((y-0,3)2+0,01)=10(y-0,3)2+0,1\(\ge\)  0,1

<=> x2+y\(\ge\) 0,1

Khi đó, y-0,3=0  <=> y=0,3 <=>x=0,1

21 tháng 3 2016

Mình đây chỉ mới lớp 5

Không thể giải được toán lớp 6 đâu

Thôi thì tặng bạn bài thơ

Cho thành câu trả lời hay nhất nè

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................

 
16 tháng 5 2020

Ta có:

 \(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)

\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)

Dấu "=" xảy ra <=> x = y = z = 1/2

Vậy min A = 27/4 tại x = y = z = 1/2 

8 tháng 8 2016

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b

Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)

Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)

Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)

Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)

8 tháng 8 2016

\(M\ge\frac{\left(1+1\right)^2}{\sqrt{1+x^2}+\sqrt{1+y^2}}\ge\frac{4}{\frac{1+x^2+5+1+y^2+5}{2\sqrt{5}}}=\frac{2\sqrt{5}}{5}\)
dấu = xảy ra khi x=y và x^2+y^2=8=> x=y=2

F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy

=(x+y)3-xy(3x+3y-2)

=20073-xy[3.2007-2]

làm tiếp đi 

chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)

21 tháng 10 2019

Đầu tiên tìm GTLN, GTNN của xy.

Không mất tính tổng quát giả sử:

\(x\ge y+1\)

\(\Leftrightarrow x-y-1\ge0\)

\(\Leftrightarrow x-y-1+xy\ge xy\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)

Từ đây ta suy được:

\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)

Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)

Ta lại có:

\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)

Thế vô là xong

12 tháng 12 2016

x2 +y2 >=2xy =>x 2 + y2 + y2+x2 >=(x+y)2 . Dấu bằng xảy ra khi x=y

=>2(x2 + y2)>=(x+y)2

thay x+y=\(\sqrt{10}\)

ta có :

2P>=10 => P>=5 dấu băng xảy ra <=>x=y=\(\sqrt{2.5}\)

4 tháng 6 2017

Áp dụng BĐT Bunhiacopxki 2(a2+b2)\(\ge\)(a+b)2 vào 2 số dương x,y ta có:

2(x2+y2)\(\ge\)(x+y)2=(\(\sqrt{10}\))2=10(x+y=\(\sqrt{10}\))

=>P=x2+y2\(\ge\)5

Dấu "=" xảy ra khi:x=y

mà x+y=\(\sqrt{10}\)=>x=y=\(\dfrac{\sqrt{10}}{2}\)