Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
à. không đọc hết đề
Đến đoạn \(x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2019}=-y^{2019}\Leftrightarrow x^{2019}+y^{2019}=0\Leftrightarrow x^{2019}+y^{2019}+1=1\)
Hay P=1
Vậy P=1
lm j mà vất vả thế
Nhân cả 2 vế của pt đâu với \(x-\sqrt{x^2+3}\) đc:
\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)
TƯơng tự nhân 2 vế của pt đầu vs \(y-\sqrt{y^2+3}\) đc:
\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)
từ (1) và (2) =>2(x+y)=0
=>x+y=0
=>lm tiếp như trên thôi
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)
<=> x+y = 0 hoặc x+z=0 hoặc z+y=0
<=> x = -y hoặc x = -z hoặc z = -y
\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)
\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)
\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)
\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)
\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)
Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức
Bài tiếp theo cũng làm tương tự
\(\)\(\left(\sqrt{x^2+3}+x\right)\left(\sqrt{x^2+3}-x\right)=3=\left(\sqrt{x^2+3}+x\right)\left(\sqrt{y^2+3}+y\right)\)
\(\Rightarrow\sqrt{x^2+3}-x=\sqrt{y^2+3}+y\)(1)
ttu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\) (2)
lay (1)+(2)
\(-\left(x+y\right)=x+y\Rightarrow x+y=0\)
ma \(A=x^{2013}+y^{2013}+1=\left(x+y\right)M+1=1\)
Bài 1
Từ giả thiết, bình phương 2 vế, ta được:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)
\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)
\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)
\(=2014\)
\(\Rightarrow A=\sqrt{2014}.\)
Bài 2:
Đặt \(\sqrt{2015}=a>0\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)
Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)
\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)
\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)
Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)
Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
Bài 3
Áp dụng bất đẳng thức Côsi
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)
Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)
\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2009}\)
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)
\(x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)
\(x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2008\)
\(\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2008\)
\(\Leftrightarrow A^2=2009\)
\(\Leftrightarrow A=\sqrt{2009}\) khi x, y > 0 hoặc \(A=-\sqrt{2009}\) khi x, y < 0
Nhân liên hợp :v
\(\left(x+\sqrt{3+x^2}\right)\left(x-\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\)
\(\Leftrightarrow-3\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\)
\(\Leftrightarrow x+y=\sqrt{3+x^2}-\sqrt{3+y^2}\) (1)
Tương tự:\(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)\left(y-\sqrt{3+y^2}\right)=3\left(y-\sqrt{3+y^2}\right)\)
\(\Leftrightarrow-3\left(x+\sqrt{3+x^2}\right)=3\left(y-\sqrt{3+y^2}\right)\)
\(\Leftrightarrow x+y=\sqrt{3+y^2}-\sqrt{3+x^2}\) (2)
Cộng (1) và (2)\(\Rightarrow2x+2y=0\Rightarrow x+y=0\)