Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
Ta có: \(8\left(x^4+y^4\right)\ge4\left(x^2+y^2\right)^2\ge\left(x+y\right)^2=1\)
Và: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
=> ĐPCM
Ta có \(1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow xy\le\frac{1}{4}\)
Ta lại có
8(x4 + y4) = 8[(x2 + y2)2 - 2x2y2
= 8{[(x + y)2 - 2xy]2 - 2x2y2 }
\(\ge\)\(8\left(\left(1-\frac{1}{2}\right)^2-\frac{1}{8}\right)=1\)(1)
Ta lại có
\(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=4\)(2)
Từ (1) và (2)
\(\Rightarrow8\left(x^4+y^4\right)+\frac{1}{xy}\ge5\)
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
vì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>=\frac{9}{x+1+y+1+z+1}=\frac{9}{1+3}=\frac{9}{4}\)(bđt svacxo)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)< =3-\frac{9}{4}=\frac{3}{4}\)
dấu = xảy ra khi x=y=z=\(\frac{1}{3}\)
Theo bất đẳng thức AM-GM dạng cộng mẫu thức ta có :
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy ta có điều phải chứng minh