Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(y-x=7\Leftrightarrow y^2-2xy+x^2=49\)
\(\Leftrightarrow\left(y^2+2xy+x^2\right)-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2-4.60=49\)
\(\Leftrightarrow\left(x+y\right)^2=289\)
\(\Leftrightarrow x+y=17\)
Dùng hiệu tỉ là ra x , y ngay ak bạn , nhớ loại m kết hợp điều kiện
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{25}{2}\)
Dấu "=" xảy ra tại x=y=1/2
a, Áp dụng bđt cosi ta có :
2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4
<=> xy.(x^2+y^2) < = 2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Vậy ............
Tk mk nha
b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1
<=> 2xy < = 2
Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)
= \(\frac{9}{\left(x+y\right)^2+2xy}\)
< = \(\frac{9}{2^2+2}\)= 3/2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
cậu thế vào, Ta có:
x=12,y=5
Vậy x+y=17.Toán vòng 11 olympic chứ gì, mình thi rồi.
5 và 12 bạn nhé