\(x+y=1\)

Tìm GTNN của  

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mời các bạn Xem lời giải mình thử nhé, chả hiểu sao mình tìm được maxB mà không phải minB, nếu sai chỗ nào nhớ góp ý cho mình với nhé!!!. Cảm ơn...

Có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)), mà \(x+y=1\Leftrightarrow x^3+y^3=x^2+y^2+xy\)

mà \(\left(x+y\right)^2=1^2=1\Rightarrow x^2+xy+y^2=1-xy\)\(\Rightarrow\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{1-xy}+\frac{1}{xy}=\frac{1}{xy-\left(xy\right)^2}\)

Lại có: \(x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+xy\ge3xy\Leftrightarrow1-xy\ge3xy\)\(\Rightarrow xy\le\frac{1}{4}\)( AD bđt Cosy),  để tính maxB \(\Rightarrow xy-\left(xy\right)^2min\), mà \(max\left(xy\right)=\frac{1}{4}\)\(\Rightarrow maxB=\frac{1}{\frac{1}{4}-\left(\frac{1}{4}\right)^2}=\frac{16}{3}\)

2 tháng 8 2020

@Nguyễn Phước Nhật Tôn HĐT sai rồi bạn ơi @@

28 tháng 1 2021

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

28 tháng 1 2021

8

555566655

5665656746565656+5965=?

DD
5 tháng 2 2021

\(\frac{1}{x^2}+\frac{1}{9y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{9y^2}}=\frac{2}{3xy}=\frac{2}{3}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2}=\frac{1}{9y^2}\\xy=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{3}\\y=\frac{1}{\sqrt{3}}\end{cases}}\).

23 tháng 3 2017

Ta có:

\(\frac{1}{x^2+x}+\frac{x+1}{4x}\ge\frac{1}{x}\)

\(\Rightarrow\frac{1}{x^2+x}\ge\frac{3}{4x}-\frac{1}{4}\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{y^2+y}\ge\frac{3}{4y}-\frac{1}{4}\left(2\right)\\\frac{1}{z^2+z}\ge\frac{3}{4z}-\frac{1}{4}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được:

\(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\)

\(\ge\frac{3}{4}.\frac{\left(1+1+1\right)^2}{x+y+z}-\frac{3}{4}=\frac{3}{2}\)

Vậy GTNN là  \(P=\frac{3}{2}\)đạt được khi \(x=y=z=1\)

23 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=9\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Lại áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{\left(1+1+1\right)^2}{x^2+x+y^2+y+z^2+z}\)

\(=\frac{\left(1+1+1\right)^2}{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)}\ge\frac{\left(1+1+1\right)^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Đẳng  thức xảy ra khi \(x=y=z=1\)

19 tháng 7 2021

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

6 tháng 7 2018

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

6 tháng 7 2018

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)

13 tháng 6 2021

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt cosi)

=> \(\frac{\left(x+y\right)^2}{4}\ge4\) <=> \(\left(x+y\right)^2\ge16\) <=> \(x+y\ge4\)

CM bđt tương đương: \(\frac{1}{x+3}+\frac{1}{y+3}\le\frac{2}{5}\) 

<=> \(\frac{5\left(x+3\right)+5\left(y+3\right)}{\left(y+3\right)\left(y+3\right)}\le2\)

<=> \(2\left(xy+3x+3y+9\right)\ge5x+5y+30\)

<=> \(2.4+6\left(x+y\right)+18-5\left(x+y\right)-30\ge0\)

<=> \(x+y-4\ge0\) (vì x + y \(\ge\)4)

<=> \(4-4\ge0\) (Luôn đúng) 

=> ĐPCM

11 tháng 5 2017

1 thách dám tích

17 tháng 5 2017

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)

Dấu = xảy ra khi x=y=2