Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1=x+y\ge2\sqrt{xy}\)
\(\Rightarrow4xy\le1\)
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Áp dụng BĐT AM - MG ta có :
\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)
Áp dụng BĐT Cauchy - Schwarz dạng Engel :
\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)
\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)
\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)
Xảy ra khi \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)
a) \(4xy\le\left(x+y\right)^2=1\)
=> \(xy\le4\)
Dấu "=" xảy ra <=> x = y = 1/2
b) A = \(A=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2xy+\dfrac{2}{xy}+4=\left(32xy+\dfrac{2}{xy}\right)-30xy+4\ge8-\dfrac{30}{4}+4=\dfrac{9}{2}\)
Dấu "=" xảy ra <=> x = y = 1/2
\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:
\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=
\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)
Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có \(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)=x^2y^2+1+1+\dfrac{1}{x^2y^2}=x^2y^2+2+\dfrac{1}{x^2y^2}=\dfrac{x^4y^4+2x^2y^2+1}{x^2y^2}=\dfrac{\left(x^2y^2+1\right)^2}{\left(xy\right)^2}=\left(\dfrac{x^2y^2+1}{xy}\right)^2=\left(xy+\dfrac{1}{xy}\right)^2=\left(xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\right)^2\)
Áp dụng bđt cosi, ta có \(xy+\dfrac{1}{16xy}\ge2\sqrt{xy.\dfrac{1}{16xy}}=2\sqrt{\dfrac{1}{16}}=2.\dfrac{1}{4}=\dfrac{1}{2}\)
\(2\sqrt{xy}\le\left(x+y\right)^2\Leftrightarrow\sqrt{xy}\le\dfrac{\left(x+y\right)^2}{2}=\dfrac{1}{2}\Leftrightarrow xy\le\dfrac{1}{4}\Leftrightarrow\dfrac{15}{16xy}\ge\dfrac{15}{4}\)
Vậy \(xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\Leftrightarrow\left(xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\right)^2\ge\dfrac{289}{16}\)
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+y=1\\xy=\dfrac{1}{16xy}\\x=y\end{matrix}\right.\)\(\Leftrightarrow\)\(x=y=0,5\)
Vậy GTNN của \(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)=\(\dfrac{289}{16}\) và xảy ra khi x=y=0,5