Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có y2 = 1 - x2
=> 1 - x2 \(\ge0\)
<=> \(-1\le x\le1\)
Kết hợp với điều kiện ban đầu ta được
\(0\le x\le1\)
P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)
Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)
Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)
Bunhia chỉ có h/s giỏi học thôi.
x+3y\(\ge\) 1 <=> x\(\ge\) 1-3y
<=> x2+y2 \(\ge\) (1-3y)2+y2
Ta có: (1-3y)2+y2=1-6y+9y2+y2=10y2-6y+1=10(y2-0,6y+0,1)=10((y-0,3)2+0,01)=10(y-0,3)2+0,1\(\ge\) 0,1
<=> x2+y2 \(\ge\) 0,1
Khi đó, y-0,3=0 <=> y=0,3 <=>x=0,1
Mình đây chỉ mới lớp 5
Không thể giải được toán lớp 6 đâu
Thôi thì tặng bạn bài thơ
Cho thành câu trả lời hay nhất nè
\(x^3+y^3+xy=x^2+y^2\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)
- \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).
- \(x+y=1\Rightarrow0\le x,y\le1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)
Dấu \(=\)xảy ra tại \(x=0,y=1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)
Dấu \(=\)xảy ra tại \(x=1,y=0\).
Ta có:
\(x^2+y^2=2\)
\(\Rightarrow0\le x\le\sqrt{2}\)
\(0\le y\le\sqrt{2}\)(1)
Lại có:
\(P=x+3y\)
\(\Rightarrow3y\ge0\) (1)
Để P nhỏ nhất thì x hoặc 3y đạt giá trị nhỏ nhất vì x và 3y đều lớn hơn 0.
Xét trường hợp x nhỏ nhất:
\(x\ge0\) dấu bằng xảy ra \(\Leftrightarrow x=0\Rightarrow y=\sqrt{2}\)
\(\Rightarrow P=3\sqrt{2}\)
Xét trường hợp y nhỏ nhất.
\(y\ge0\) dấu bằng xảy ra \(\Leftrightarrow y=0\Rightarrow x=\sqrt{2}\)
\(\Rightarrow P=\sqrt{2}\)
Vậy giá trị nhỏ nhất của P tại \(\left(x,y\right)=\left(\sqrt{2},0\right)\)