Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
BĐT Bunhiacopxky em chưa học cô ạ
Cô cong cách nào không ạ
Nguyễn Thị Nguyệt Ánh:
Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:
Áp dụng BĐT Cô-si:
$x+y+z\geq 3\sqrt[3]{xyz}$
$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$
Nhân theo vế:
$(x+y+z)(xy+yz+xz)\geq 9xyz$
$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(T=\frac{1}{a^2+b^2+3}+\frac{1}{2ab}\)
\(T=\frac{1}{a^2+b^2+3}+\frac{1}{5ab}+\frac{3}{10ab}\)
Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\left(x,y>0\right)\)
\(2ab\le a^2+b^2\Leftrightarrow4ab\le\left(a^2+b^2+2ab\right)\Leftrightarrow2ab\le\frac{\left(a+b\right)^2}{2}\)
Áp dụng:
\(T\ge\frac{4}{a^2+b^2+3+5ab}+\frac{3}{5.\frac{\left(a+b\right)^2}{2}}\ge\frac{4}{\left(a+b\right)^2+3+1,5.\frac{\left(a+b\right)^2}{2}}+\frac{3}{5.\frac{2^2}{2}}=\frac{4}{2^2+3+1,5.\frac{2^2}{2}}+\frac{3}{5.2}=\frac{4}{10}+\frac{3}{10}=\frac{7}{10}\)Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)( lát giải thích sau )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\\frac{1}{a^2+b^2+3}=\frac{1}{5ab}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a^2+b^2+3=5ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\\left(a+b\right)^2-2ab+3=5ab\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\4+3=5ab+2ab\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\7=7ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\ab=1\end{cases}}\Leftrightarrow a=b=1\)
Bổ sung thêm:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y>0)
Dấu " = '" xảy ra <=> x=y
\(2ab\le a^2+b^2\)
Dấu " = '" xảy ra <=> a=b
hóng với ai biết làm chỉ công thức đê , cho chúa Pain làm với :))