Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy)
= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]
= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz)
Suy ra:
P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2
Vậy P min = 9/2
Dấu = xra khi x = y = z = 1
Bài 1:
Ta có
A =x/(x+1) +y/(y+1)+z/(z+1)
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1)
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ]
B = 1/(x+1)+1/(y+1) +1/(z+1)
Đặt x+1=a; y+1=b;z+1 =c
=>a+b+c=4
4B=4(1/a+1/b+1/c)
B= (a+b+c) (1/a+1/b+1/c)
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a)
Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab
=> a/b+b/a ≥2 dấu "=" khi a=b
Tương tự có
a/c+c/a ≥2 ;b/c+c/b ≥2
=>4B ≥3+2+2+2=9
=>B ≥ 9/4
=>A ≤ 3-9/4 = 3/4
Vậy max A =3/4 khi a=b=c
=>x=y=z =1/3
Bài 2:
Giúp tui nha
\(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
A=1+y/x+z/x+x/y+1+z/y+x/z+y/z+1
A=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)
với x,y,z > 0 Áp dụng BDT cauchy ta có
\(\hept{\begin{cases}\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\\\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\\\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\end{cases}}\)
=> A\(\ge\)3+2+2+2=9
( Dấu "=" xảy ra <=> x=y=z )
Vậy GTNN của A là 9 <=> x=y=z
B=(x+y)/xyz=1/yz + 1/xz
có (x-y)2 = x2-2xy+y2 >/ 0 => x2-2xy+y2+4xy >/ 4xy =>(x+y)2 >/ 4xy => 1/x + 1/y >/ 4/x+y , đẳng thức xảy ra <=> x=y
=> B=1/yz + 1/xz >/ 4/yz+xz = 4/z(x+y) = 4/z(1-z)
áp dụng bđt am-gm z(1-z) </ (z+1-z)2/4 </ 1/4
=> B >/ 4/1/4 >/ 16 ,minB=16 ,đẳng thức xảy ra <=> x=y=1/4;z=1/2
Ta có: |x+1|>=0 với mọi x
|y+2|>=0 với mọi y
|x-y+z|>=0 với mọi x,y,z
=>|x+1|+|y+2|+|x-y+z|>=0+0+0 với mọi x,y,z
Mà |x+1|+|y+2|+|x-y+z|=0
=>|x+1|=|y+2|=|x-y+z|=0
=>x+1=y+2=x-y+z=0
=>x=-1 và y=-2 và -1-(-2)+z=0
=>x=-1,y=-2 và z=-1
Ta có: \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(=\dfrac{x+1-1}{x+1}+\dfrac{y+1-1}{y+1}+\dfrac{z+1-1}{z+1}\)
\(=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}=\dfrac{9}{4}\)
\(\Rightarrow P\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
P/s: bài này có max ko có min vì khi cho hai trong ba số tiến gần đến không thì giá trị của biểu thức ngày càng nhỏ
ơ sao lại 3/4 hả bạn tưởng 9/4 chứ