Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(y=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\geq 3\sqrt[3]{\frac{1}{4}}\)
Do đó \(y_{\min}=3\sqrt[3]{\frac{1}{4}}\)
Dấu bằng xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)
bài này bạn cho điều kiện sai rồi \(x\ge0;x\ne-1\) mới đúng nha
ta có : \(x^2\ge0\forall x\) và \(x+1\ge1>0\forall x\) \(\Leftrightarrow y=\dfrac{x^2}{x+1}\ge0\forall x\)
\(\Rightarrow\) Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x^2=0\Leftrightarrow x=0\)
vậy Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x=0\)
ta có
\(\sum x^2+xyz=4\)
\(4+2z\ge2xy+2z+z^2+xyz=\left(2+z\right)\left(z+xy\right)\)
\(2\ge z+xy\)
tương tự 2 mẫu còn lại ta có bđt sau
\(P\ge\sum\dfrac{x^4}{2}+\sum\dfrac{x^6}{6}\ge\sum\dfrac{x^4}{2}+\dfrac{\left(xyz\right)^2}{2}\left(Am-gm\right)\)
\(P\ge\dfrac{\left(\sum x^2+xyz\right)^2}{8}=2\)
@Vũ Tiền Châu @Akai Haruma @Lightning Farron @Phùng Khánh Linh @Nhã Doanh
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
Giải bài này hơi dài, t ngại làm lắm :v you vào ib t chỉ cho =))
@Lightning Farron
@Lightning Farron