K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

\(A=\dfrac{1}{x}+\dfrac{1}{4y}=\dfrac{4}{4x}+\dfrac{1}{4y}=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\)

Áp dụng BĐT Cauchy schwart, ta có:

\(A=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\ge\dfrac{\left(2+1\right)^2}{4\left(x+y\right)}=\dfrac{9}{4.2}=\dfrac{9}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{4x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=4y\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy, GTNN của \(A=\dfrac{9}{8}\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3},\dfrac{2}{3}\right)\)

28 tháng 7 2023

Áp dụng BĐT Cosi cho 2 cặp số dương là  \(\dfrac{1}{x};\dfrac{9}{16}x\) và \(\dfrac{1}{4y};\dfrac{9}{16}y\) , ta có:

\(\dfrac{1}{x}+\dfrac{9}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{9}{16}x}=2.\dfrac{3}{4}=\dfrac{3}{2}\)

\(\dfrac{1}{4y}+\dfrac{9}{16}y\ge2\sqrt{\dfrac{1}{4y}.\dfrac{9}{16}y}=2.\dfrac{3}{8}=\dfrac{3}{4}\)

Cộng vế theo vế ta được: \(\dfrac{1}{x}+\dfrac{1}{4y}+\dfrac{9}{16}\left(x+y\right)\ge\dfrac{3}{2}+\dfrac{3}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow A+\dfrac{9}{16}.2\ge\dfrac{9}{4}\Leftrightarrow A\ge\dfrac{9}{4}-\dfrac{9}{8}=\dfrac{9}{8}\)

Dấu bằng xảy ra \(\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3};\dfrac{2}{3}\right)\)

29 tháng 3 2019

Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)

              \(\Rightarrow xy\le\frac{1}{2}\)

Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)

\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

29 tháng 8 2018

Vì x>0; y>0

Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)

Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)

Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)

\(\Rightarrow4\le\sqrt{xy}\) (C)

Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)

Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)

Dấu "=" xảy ra <=> x = y

Vậy AMin = 4 khi và chỉ khi x = y

29 tháng 8 2018

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)

\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)

từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)

mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)

dấu = xảy ra khi x=y=4

vậy min A là 4 khi x=y=4

11 tháng 5 2017

\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}=2+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

Áp dụng cô-si cho từng cặp là ok,,,,

Riêng cặp cuối \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Leftrightarrow-\left(x+y\right)\ge-\sqrt{2}\)

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều

 

21 tháng 9 2019

thật là khó

11 tháng 1 2021