Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : A = 1/x^2+xy + 1/y^2+xy
Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )
Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :
A >= 4/x+y = 4/1 = 4
Dấu "=" xảy ra <=> x=y=1/2
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)
suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt cosi)
=> \(\frac{\left(x+y\right)^2}{4}\ge4\) <=> \(\left(x+y\right)^2\ge16\) <=> \(x+y\ge4\)
CM bđt tương đương: \(\frac{1}{x+3}+\frac{1}{y+3}\le\frac{2}{5}\)
<=> \(\frac{5\left(x+3\right)+5\left(y+3\right)}{\left(y+3\right)\left(y+3\right)}\le2\)
<=> \(2\left(xy+3x+3y+9\right)\ge5x+5y+30\)
<=> \(2.4+6\left(x+y\right)+18-5\left(x+y\right)-30\ge0\)
<=> \(x+y-4\ge0\) (vì x + y \(\ge\)4)
<=> \(4-4\ge0\) (Luôn đúng)
=> ĐPCM
*Áp dụng Cosi với x,y>0 ta có:
\(x+y\ge2\sqrt{xy}\left(1\right)\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(2\right)\)
Nhân (1),(2) có: \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\RightarrowĐPCM\)
**\(\frac{1}{xy}+\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}+\frac{1}{x^2+y^2}\)
Ta có: \(\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{4}{x^2+2xy+y^2}=4\)
Có: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{\left(x+y\right)^2}\le4\)
Theo Cosi ta có: \(xy\le\left(\frac{x+y}{2}\right)^2\)
\(\Rightarrow\frac{1}{xy}\ge\left(\frac{2}{x+y}\right)^2\ge\left(\frac{2}{1}\right)^2=4\)
Áp dụng Cosi ta có: \(2xy\left(x^2+y^2\right)\le\left(\frac{x^2+2xy+y^2}{2}\right)^2=\frac{\left(x+y\right)^4}{4}\le\frac{1}{4}\)
\(\Rightarrow xy\left(x^2+y^2\right)\le\frac{1}{8}\)(1)
Mà ta có ở trên: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)(2)
Từ (1) và (2) ta có: \(x^2+y^2\le\frac{1}{2}\Rightarrow\frac{1}{x^2+y^2}\ge2\)
Vậy Ta có: \(\frac{1}{xy}+\frac{1}{x^2+xy}+\frac{1}{y^2+xy}+\frac{1}{x^2+y^2}\ge4+4+2=10\)
Với x=y=1/2
ta chứng minh BĐT phụ sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này thì bạn tự cm nhé
Áp dụng BĐT trên
\(\Rightarrow\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
Mà \(x+y\le1\Rightarrow\frac{4}{\left(x+y\right)^2}\ge\frac{4}{1}=4\)
\(\Leftrightarrow\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\left(đpcm\right)\)
Sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: (ko cần CM) Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Áp dụng bất đăng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\) (1)
Ta lại có: x + y <= 1 => (x + y)2 <= 1
=> \(\frac{4}{\left(x+y\right)^2}\ge\frac{4}{1}=4\) (2)
Từ (1) và (2) => \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
=> đpcm