Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)\(=\dfrac{5x+2y+z}{555+444+333}=\dfrac{1100}{1332}=\dfrac{275}{333}\)
Từ đó tìm được x;y;z
b) Từ \(\dfrac{x}{2}=\dfrac{y}{3}\) \(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)
Đặt \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4k\\y^2=9k\end{matrix}\right.\)
\(\Rightarrow x^2\cdot y^2=4k\cdot9k=52\)
\(\Rightarrow36k^2=52\)
\(\Rightarrow k^2=\dfrac{13}{9}\) (sai đề)
b: Sửa đề: x^2+y^2=52
Đặt x/2=y/3=k
=>x=2k; y=3k
x^2+y^2=52
=>4k^2+9k^2=52
=>k^2=4
TH1: k=2
=>x=4; y=6
TH2: k=-2
=>x=-4; y=-6
c: Đặt x/5=y/3=k
=>x=5k; y=3k
x^2-y^2=16
=>25k^2-9k^2=16
=>k^2=1
TH1: k=1
=>x=5; y=3
TH2: k=-1
=>x=-5; y=-3
d: Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: xy=54
=>2k*3k=54
=>6k^2=54
=>k^2=9
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
e: Đặt x/4=y/3=k
=>x=4k; y=3k
Ta có: xy=12
=>4k*3k=12
=>k^2=1
TH1: k=1
=>x=4; y=3
TH2: k=-1
=>x=-4; y=-3
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
b)
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{5x-5}{10}=\dfrac{3y+9}{12}=\dfrac{4z-20}{24}\)
\(\Rightarrow\dfrac{\left(5x-3y-4z\right)-\left(5+9-20\right)}{10-12-24}=\dfrac{46+6}{-26}=-2\)
\(\Rightarrow x-1=-4\Rightarrow x=-3\)
\(\Rightarrow y+3=-8\Rightarrow y=-11\)
\(\Rightarrow z-5=-12\Rightarrow-7\)
a: 3x=2y nên x/2=y/3
7y=5z nên y/5=z/7
=>x/10=y/15=z/21
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
=>x=20; y=30; z=42
b: 2x=3y=5z
nên x/15=y/10=z/6
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
=>x=75; y=50; z=30
d: Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2+2y^2-3z^2=-100
=>18k^2+32k^2-3*25k^2=-100
=>25k^2=100
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
Lời giải:
Ta có:
$\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=\frac{-(x-y)}{xy}=\frac{-xy}{xy}=-1$