K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

a^3 - 3ab + 2c 
= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3) 
= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3) 
= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)] 
= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2) 
= 3(x^3 + x^3) - 3(x^3 + y^3) 
= 0 

11 tháng 10 2018

 a^3 - 3ab + 2c

= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3)

= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3)

= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)]

= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2)

= 3(x^3 + x^3) - 3(x^3 + y^3)

= 0

10 tháng 10 2018

\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)

\(2c=2x^3+2y^3\)

\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Dựa vào các hằng đẳng thức đáng nhớ ta có:

\(a^3-3ab+2c=(x+y)^3-3(x+y)(x^2+y^2)+2(x^3+y^3)\)

\(=x^3+y^3+3x^2y+3xy^2-3(x^3+xy^2+x^2y+y^3)+2(x^3+y^3)\)

\(=(x^3-3x^3+2x^3)+(y^3-3y^3+2y^3)+(3x^2y-3x^2y)+(3xy^2-3xy^2)\)

\(=0\)

28 tháng 6 2018

bài 2 

Giải:x6+y6)-3(x4+y4)

 2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)

⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4

⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4

⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4

⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4

⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)

⇔−(x2+y2)2⇔−(x2+y2)2

⇔−1

28 tháng 6 2018

bài 1

bạn thay vào hết và tính ra là được 

\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)

28 tháng 7 2019

\(a^3-3ab+2c\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^3-3x^2y-3xy^2-3y^3+2x^3+2y^3\)

\(=0\)

28 tháng 7 2019

Có: x + y = a <=> (x + y)3 = a3

                            3ab = 3(x + y)(x2 + y2)

                            2c = 2(x3 + y3)

Thay vào biểu thức ta được:

a3 - 3ab + 2c = (x + y)3 - 3(x + y)(x2 + y2) + 2(x3 + y3)

a3 - 3ab + 2c = x3 + y3 + 3x2y + 3xy2 - 3x3 - 3xy2 - 3x2y - 3y3 + 2x3 + 2y3

a3 - 3ab + 2c = 0 (đpcm)

Câu 2: 

\(A=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)

\(=2\left(1-3x^2y^2\right)-3\left(1-2x^2y^2\right)\)

\(=2-6x^2y^2-3+6x^2y^2=-1\)

\(a^3-3ab+2c=\left(x+y\right)^2-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

=\(\left(x^3+y^3+3xy^2+3x^2y\right)-3\left(x^3+y^3+3xy^2+3x^2y\right)+2x^2+2y^2\)

= \(\left(x^3-3x^3+2x^3\right)+\left(y^3-3y^3+2y^3\right)+\left(3x^2y-3x^2y\right)+\left(3xy^2-3xy^2\right)\)

= 0

15 tháng 11 2017

Phạm Quốc Cường làm gần đúng rồi đó.

Dòng đầu phải là \(\left(x+y\right)^3\)

k mình nha

Thanks

3 tháng 7 2015

Từ x+y=a x2+y2=b x3+y3=c

=>a3+2c=(x+y)3+2x3+2y3=x3+3x2y+3xy2+y3+2x3+2y3=3(x3+y3+x2y+xy2)(1)

3ab=3(x+y)(x2+y2)=3(x3+y3+x2y+xy2)(2)

Từ 1 và 2 =>a3+2c=3ab(ĐPCM)

10 tháng 6 2016

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left[\left(x^2+y^2\right)-\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]\)

\(\Rightarrow c=a\left(b-\frac{a^2-b}{2}\right)\Leftrightarrow c=\frac{a\left(3b-a^2\right)}{2}\Leftrightarrow a^3-3ab+2c=0\)

Bạn xem lại đề bài nhé ^^