K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Ta có \(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3\left(x^3+x^2y+xy^2+y^3\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^3-3xy^2-3x^2y-3y^3+2x^3+2y^3\)

\(=0\left(đpcm\right)\)

20 tháng 8 2015

\(a^3-3ab+2c=0\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-3x^2-3y^2+2x^2-2xy+2y^2\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-3x^2-3y^2+2x^2-2xy+2y^2\right)\)

\(=\left(x+y\right).0\)

\(=0\)

 

 

10 tháng 10 2018

\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)

\(2c=2x^3+2y^3\)

\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)

11 tháng 10 2018

a^3 - 3ab + 2c 
= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3) 
= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3) 
= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)] 
= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2) 
= 3(x^3 + x^3) - 3(x^3 + y^3) 
= 0 

11 tháng 10 2018

 a^3 - 3ab + 2c

= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3)

= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3)

= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)]

= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2)

= 3(x^3 + x^3) - 3(x^3 + y^3)

= 0

14 tháng 10 2018

Sửa đề: Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)

Chứng minh: \(a^3-2ab+2c=0\)

Giải:

Ta có:

\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+y^3+3xy\left(x+y\right)-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=3\left(x^3+y^3\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)=3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)\)

\(=3\left(x+y\right)\left(x^2-xy+y^2+xy-x^2-y^2\right)=3\left(x+y\right).0\)

\(=0\) (đpcm)

28 tháng 6 2018

2/

2(x6+y6)-3(x4+y4)

=2[(x2)3+(y2)3 ] - 3x4-3y4

=2(x2+y2)(x4-x2y2+y4)-3x4-3y4

=2.1(x4-x2y2+y4)-3x4-3y4

=2x4-2x2y2+2y4-3x4-3y4

=-x4-2x2y2-y4

=-(x4+2x2y2+y4)

=-(x2+y2)

=-1

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Dựa vào các hằng đẳng thức đáng nhớ ta có:

\(a^3-3ab+2c=(x+y)^3-3(x+y)(x^2+y^2)+2(x^3+y^3)\)

\(=x^3+y^3+3x^2y+3xy^2-3(x^3+xy^2+x^2y+y^3)+2(x^3+y^3)\)

\(=(x^3-3x^3+2x^3)+(y^3-3y^3+2y^3)+(3x^2y-3x^2y)+(3xy^2-3xy^2)\)

\(=0\)

28 tháng 7 2019

\(a^3-3ab+2c\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^3-3x^2y-3xy^2-3y^3+2x^3+2y^3\)

\(=0\)

28 tháng 7 2019

Có: x + y = a <=> (x + y)3 = a3

                            3ab = 3(x + y)(x2 + y2)

                            2c = 2(x3 + y3)

Thay vào biểu thức ta được:

a3 - 3ab + 2c = (x + y)3 - 3(x + y)(x2 + y2) + 2(x3 + y3)

a3 - 3ab + 2c = x3 + y3 + 3x2y + 3xy2 - 3x3 - 3xy2 - 3x2y - 3y3 + 2x3 + 2y3

a3 - 3ab + 2c = 0 (đpcm)

28 tháng 6 2018

bài 2 

Giải:x6+y6)-3(x4+y4)

 2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)

⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4

⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4

⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4

⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4

⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)

⇔−(x2+y2)2⇔−(x2+y2)2

⇔−1

28 tháng 6 2018

bài 1

bạn thay vào hết và tính ra là được 

\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)