\(x^5+y^5\ge2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

Đặt x=1+a =>y=1-a

=>x5+y5=(1+a)5+(1-a)5

=10a4+20a2+2\(\ge\)2 (vì \(a^4\ge0;a^2\ge0\)với mọi a)

=>x5+y5\(\ge\)2 (Đpcm)

Dấu = khi a=0 <=>x=y=1

26 tháng 7 2016

Đặt \(x=1+a\) \(\Rightarrow y=1-a\)

\(\Rightarrow x^5+y^5=\left(1+a\right)^5+\left(1-a\right)^5\)

\(=10a^4+20a^2+2\ge2\) ( vì \(a^4>0;a^2>0\) với mọi a )

\(\Rightarrow x^5+y^5\ge2\left(ĐPCM\right)\)

Dấu = xảy ra khi \(a=0\Leftrightarrow x=y=1\)

26 tháng 7 2016

- Bửa hổm mới làm nà ~~

14 tháng 1 2017

Ta có \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Xét \(\frac{z+x}{10}=\frac{y+z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{4}=\frac{x-y}{4}\) (1)

Xét \(\frac{x+y}{15}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{5}=\frac{y-z}{5}\) (2)

Từ (1) và (2)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

14 tháng 1 2017

thks múc

14 tháng 8 2016

Ta có : \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\)

Theo bất đẳng thức Cô si ta có : 

     \(x^2+y^2\ge2xy\)dấu = khi x=y

\(\Rightarrow\frac{x^2+y^2}{xy}\ge\frac{2xy}{xy}=2\)

\(\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\) dấu = khi x=y

18 tháng 7 2016

Sai đề khi x=2 ; y=-1 thì sai vcl

18 tháng 7 2016

nhầm chứ : thay x=2 ; y=0

15 tháng 8 2017

Nhiều quá bạn ơi ( Hhôm nào cũng thấy đăng 6,7 câu )

15 tháng 8 2017

giúp người đi bạn

24 tháng 7 2017

a. VP: \(\left(x+y\right)^{1999}\cdot\left(x-y\right)^{1999}=\left[\left(x+y\right)\left(x-y\right)\right]^{1999}\)

\(=\left(x^2-xy+xy-y^2\right)^{1999}=\left(x^2-y^2\right)^{1999}=VT\)

--> đpcm

b. VT: \(\dfrac{\left(5^4-5^3\right)^3}{125^4}=\dfrac{500^3}{125^4}=\dfrac{125^3\cdot4^3}{125^4}=\dfrac{4^3}{125}=\dfrac{64}{125}=VP\)

--> đpcm