Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=2\)
\(\Rightarrow x=2-y\)
Theo đế bài , ta có:
\(x.y=\left(2-y\right)y=2y-y^2\)
\(=-\left(y^2-2y\right)=-\left(y^2-2y+1-1\right)=-\left[\left(y-1\right)^2-1\right]=-\left(y-1\right)^2+1\)
Vì \(\left(y-1\right)^2\ge0\left(y\in R\right)\)
nên \(-\left(y-1\right)^2\le0\left(y\in R\right)\)
do đó \(-\left(y-1\right)^2+1\le1\left(y\in R\right)\)
Hay \(x.y\le1\left(đpcm\right)\)
Ta có : \(x+y=2< =>\left(x+y\right)^2=4< =>\left(\frac{x+y}{2}\right)^2=1\)
Bài toán quy về chứng minh \(xy\le\left(\frac{x+y}{2}\right)^2\)
\(< =>xy\le\frac{\left(x+y\right)^2}{4}< =>4xy\le x^2+y^2+2xy\)
\(< =>4xy-2xy\le x^2+y^2< =>\left(x-y\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh
Ta thấy: \(\left(x+y\right)^2-\left(x-y\right)^2=4xy\)
Thay x + y = 2 vào biểu thức trên ta được:
\(2^2-\left(x-y\right)^2=4xy\)
\(\Rightarrow4-\left(x-y\right)^2=4xy\)
Do \(\left(x-y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow4-\left(x-y\right)^2\le4\) ( mọi x và y )
\(\Rightarrow4xy\le4\) ( mọi x và y )
\(\Rightarrow xy\le1\) ( mọi x và y )
Vậy với mọi x và y, nếu \(x+y=2\) thì \(xy\le1\). Đẳng thức xảy ra khi và chỉ khi:
\(4xy=4\)
\(\Rightarrow4-\left(x-y\right)^2=4\)
\(\Rightarrow\left(x-y\right)^2=0\)
\(\Rightarrow x-y=0\)
\(\Rightarrow x=y\)
đặt x = 1 + a ; y = 1 - a thì x + y = ( 1 + a ) + ( 1 - a ) = 2
xy = ( 1 + a ) . ( 1 - a )
xy = 1 - a2
Mà a2 \(\ge\)0
\(\Rightarrow\)1 - a2 \(\le\)1