Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mk sửa cái đề bài là cho x và y là 2 đại lượng tỉ lệ nghịch nhé !!!
- \(P=\frac{x^2+2}{1-x^3}-\frac{1}{2\left(1+\sqrt{x}\right)}-\frac{1}{2\left(1-\sqrt{x}\right)}\\ =\frac{x^2+2}{1-x^3}+\frac{-1+\sqrt{x}}{2\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\frac{-1-\sqrt{x}}{2\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}\\ =\frac{x^2+2}{\left(1-x\right)\left(1+x+x^2\right)}+\frac{-1}{1-x}\\ =\frac{x^2+2-\left(1+x+x^2\right)}{\left(1-x\right)\left(1+x+x^2\right)}\\ =\frac{1-x}{\left(1-x\right)\left(1+x+x^2\right)}\\ =\frac{1}{1+x+x^2}\)
b,Ta có \(\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{y_1-x_1}{y_2-x_2}=\frac{-2}{-1}=2\)
\(\Rightarrow\hept{\begin{cases}x_1=2x_2=2.4=8\\y_1=2y_2=2.3=6\end{cases}}\)
...............
a) Vì 2 đại lượng x, y tỉ lệ nghịch nên: y1/x2 = y2/x1 => y1/2 = y2/3 = 2y1/4 = 3y2/9 và 2y1 + 3y2 = -26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2y1/4 = 3y2/9 = 2y1 + 3y2/4+9 = -26/13 = -2
=> y1/2 = -2 => y1 = -2.2 = -4
y2/3 = -2 => y2 = -2.3 = -6
Câu 2 cũng vậy nhưng ngược lại nha
a. y2=−5y2=−5
b. {y1=−8y2=−4{y1=−8y2=−4
Giải thích các bước giải:
a. Vì x, y là 2 đại lượng tỉ lệ nghịch với x1,x2x1,x2 là 2 giá trị bất kì của x và y1,y2y1,y2 là 2 giá trị tương ứng của y
Suy ra: x1.y1=x2.y2x1.y1=x2.y2
⇒ y2=x1.y1x2=−459=−5y2=x1.y1x2=−459=−5
b. Theo câu a:
x1.y1=x2.y2⇔2y1=4y2⇔y1=2y2x1.y1=x2.y2⇔2y1=4y2⇔y1=2y2
Ta có:
{y1=2y2y1+y2=−12⇔{y1=−8y2=−4