K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

$x^{200}+x^{100}+1=(x^{200}-x^2)+(x^{100}-x^4)+x^4+x^2+1$

$=x^2(x^{198}-1)+x^4(x^{96}-1)+x^4+x^2+1$

Ta thấy:

$x^{198}-1=(x^6)^{33}-1^{33}\vdots x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1$

$x^{96}-1=(x^6)^{16}-1\vdots x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1$

$x^4+x^2+1\vdots x^4+x^2+1$

$\Rightarrow x^2(x^{198}-1)+x^4(x^{96}-1)+x^4+x^2+1\vdots x^4+x^2+1$ (đpcm)

4 tháng 11 2016

Ta có 

x200 = (x200 + x198 + x196) + (- x198 - x196 - x194) + ...+ x2 = (x4 + x2 + 1)A(x) + x2

Tương tự 

x100 = (x4 + x2 + 1)B(x) + x4 

Từ đó ta có

x200 + x100 + 1 =  (x4 + x2 + 1)A(x) + x+ (x4 + x2 + 1)B(x) + x4 + 1 

= (x4 + x2 + 1)C(x) chia hết cho x4 + x2 + 1

3 tháng 11 2016

biến đổi x^200+x^100+1 ra sao nhỉ

19 tháng 8 2016

x200 = x200 + x198 + x196 - x198 - x196 - x194 + ... + x= A(x)(x+ x+ 1) + x2

x100 = B(x)(x+ x+ 1) + x4

Từ đó ta có:x200 + x100 + 1 = A(x)(x+ x+ 1) + x+ B(x)(x+ x+ 1) + x+ 1

Từ đó ta có ta có điều phải chứng minh

19 tháng 8 2016

tuyệt, lâu lâu mới gặp cách giải đầy trí tuệ, tôi tisk cho bn alibaba nguyễn 

7 tháng 9 2017

Có gì đó sai sai mà sai thật!!

Ta có: \(\left(x^{200}+x^{100}+1\right)=\left(x^{100}+1\right)^2\)

\(\left(x^4+x^2+1\right)=\left(x^2+1\right)^2\)

\(1⋮1;x^{100}⋮x^2\forall x\)

\(\Rightarrow x^{100}+1⋮x^2+1\forall x\)

\(\Rightarrow Vớix\in Z,\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)

4 tháng 9 2016

vì x^200 chia hết cho 4 , x^100 chia hết cho x^2 và 1 chia hết cho 1 nên x^200+x^100+1 chia hếtcho x^4+x^2+1

**** bn nhe  

4 tháng 9 2016

Đặt x2=ax2=a. Cần chứng minh: a^100+a^50⋮a2+a+1a100+a50⋮a2+a+1

Sử dụng tính chất quen thuộc: a3m+1+a3n+2=a(a3m−1)+a2(a3n−1)−(a2+a+1)⋮a2+a+1

5 tháng 10 2017

Bài 1 : Tìm x, biết :

\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\) \(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+\left(x-2\right)\left(2\left(x+2\right)-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2\left(x+2\right)-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\\left(x+2\right)^2+2>0\end{matrix}\right.\Rightarrow x=2\)