Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2.\left(a-b\right).\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right).\left(2a+2b+1\right)=b^2\left(1\right)\)
Gọi \(d=ƯCLN ( a-b;2a+2b+1)\)
\(\Rightarrow a-b\) chia hết cho d và \(2a+2b+1\) chia hết cho d.
\(\Rightarrow b^2=\left(a-b\right).\left(2a+2b+1\right)\) chia hết cho \(d^2.\)
\(\Rightarrow b\) chia hết cho d.
Lại có: \(2.(a-b)-(2a+2b+1)\) chia hết cho d.
\(\Rightarrow d=-4b-1\) chia hết cho d.
\(\Rightarrow1\) chia hết cho d.
\(\Rightarrow d=1\)
\(\Rightarrow a-b\) và \((2a+2b+1)\) nguyên tố cùng nhau. ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(a-b\) và \(2a+2b+1\) là số chính phương. ( đpcm )
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)
Vì a,b,c,d,m,n thuộc Z và a < b < c < d < m < n nên ta có :
a + b < 2a ( 1 )
c + d < 2c (2)
m + n < 2m ( 3)
Cộng vế với vế các bđt (1), (2) và (3) ta được : a + b + c + d + m + n > 2 ( a + c + m )
=> \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)
=>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\) ( đpcm )
xin lỗi mình đánh nhầm dấu ">" thành "<" mình xin đính chính lại nhé : a + c > 2a (1 )
c + d > 2c (2)
m + n > 2m ( 3)
có chút sai xót chỗ này thành thật xin lỗi !
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)