Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)
Ta có đpcm.
Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$
Áp dụng BĐT AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân theo vế 2 BĐT trên ta có:
\(VT\ge3^2\cdot\sqrt[3]{xyz\cdot\frac{1}{xyz}}=9=VP\)
Xảy ra khi \(a=b=c\)
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
Ta có:
\(\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4.\frac{x}{y}.\frac{y}{x}\)
\(=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\) với mọi x y >0
Vì x, y >0 => \(\frac{x}{y}+\frac{y}{x}>0\) mà \(\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\)
=> \(\frac{x}{y}+\frac{y}{x}\ge2>\frac{1}{2}\)với mọi x, y >0
"=" xảy ra <=> x =y
Em kiểm tra lại đề bài nha.
theo bất đẳng thức côsi thì
\(x+\frac{1}{x}\ge2\sqrt{x\times\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge2^2=4\)(1)
tương tự \(\left(y+\frac{1}{y}\right)^2\ge4\)(2)
Từ (1),(2)\(\Rightarrow\)đpcm
Áp dụng bđt AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)
CMTT \(\left(y+\frac{1}{y}\right)^2\ge4\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge4\left(dpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow x=y=1\)