Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y+3.y/x=4
đặt b=y/x<1
1/b+3b=4
3b^2-4b+1=0
b=1loia
b=1/3
(2+5b)/(1-2.b)
\(P=\frac{2+5.\frac{1}{3}}{1-2.\frac{1}{3}}=\frac{\frac{11}{3}}{\frac{1}{3}}=11\)
Giải:
Ta có: \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\Leftrightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Mà \(x>y>0\Leftrightarrow x-y>0\)
Do đó \(x-3y=0\Leftrightarrow x=3y\)
Thay vào \(\Rightarrow A=\frac{2x+5y}{x-2y}=\frac{6y+5y}{3y-2y}=\frac{11y}{y}=11\)
\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)
\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A
\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)
\(x^2+3y^2=4xy\)
\(x^2+4y^2-y^2-4xy=0\)
\(\left(x-2y\right)^2-y^2=0\)
\(\left(x-3y\right)\left(x-y\right)=0\)
=> x=3y hoặc x=y
Mà ta có x>y>0 => Trường hợp x=y loại
x=3y(Nhận)
Thay x=3y vào biểu thức ta có:
P=\(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
a \(=9x^2-6x+1+2012\)
\(=\left(3x-1\right)^2+2012\)
\(=200000^2+2012\)
b: \(=2014^2-2\cdot2014\cdot1014+1014^2\)
\(=\left(2014-1014\right)^2=1000^2=10^6\)
c: \(x^2+3y^2=4xy\)
=>x^2-4xy+3y^2=0
=>(x-y)*(x-3y)=0
=>x=y hoặc x=3y
KHi x=y thì \(C=\dfrac{2x+2013x}{x-2x}=-2015\)
Khi x=3y thì \(C=\dfrac{6y+2013y}{3y-2y}=2019\)
\(x^2+3y^2-4xy=0\)
\(\Leftrightarrow\left(y-x\right)\left(3y-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=3y\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{2x+y}{x-2y}=\dfrac{2.3y+y}{3y-2y}=7\)