K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)

\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)

\(=3+4+\frac{3}{2}=\frac{17}{2}\)

Dấu "=" xảy ra <=> x = 4 và y = 16

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

4 tháng 2 2019

Áp dụng BĐT Minicopski ta có:

\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)

\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)

Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)

31 tháng 10 2020

Áp dụng bất đẳng thức AM-GM:

\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);

\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);

\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)

\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)

Vậy \(P_{max}=\frac{11}{12}\)

Dấu "=" xảy ra khi \(x=2;y=8;z=18\)

8 tháng 9 2018

TA CÓ:

\(P=\frac{4x}{4\sqrt{y+z-4}}+\frac{4y}{4\sqrt{z+x-4}}+\frac{4z}{4\sqrt{x+z-4}}\)

ÁP DỤNG HẰNG ĐẲNG THỨC:

a2+4\(\ge\)4a

\(\Rightarrow P\ge\frac{4x}{y+z-4+4}+\frac{4y}{z+x-4+4}+\frac{4z}{4+z+x-4}=4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI x=y=z=4

8 tháng 9 2018

NẾU AI CHƯA HIỂU ĐOẠN 

\(4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

THÌ LÀM THẾ NÀY NHÉ:
TA CÓ:

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{x\left(y+z\right)}+\frac{y^2}{y\left(z+x\right)}+\frac{z^2}{z\left(x+y\right)}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{2.\frac{\left(x+y+z\right)^2}{3}}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)\(\Rightarrow4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge\frac{4.3}{2}=6\)