Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)
\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)
=> \(A\ge-\frac{2}{3}\)
\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)
Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a
c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
KL:.............................
Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)
\(\Rightarrow4\left(x^2+y^2\right)\ge8\)
Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)
Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...
Áp dụng bất đẳng thức bunhiacốpxki, ta có:
\(\left(x^2+y^2\right).\left(1^2+1^2\right)\ge\left(x.1+y.1\right)^2\)
=>\(\left(x^2+y^2\right).2\ge\left(x+y\right)^2\)
=>\(\left(x^2+y^2\right).2\ge4^2\)
=>\(\left(x^2+y^2\right).2\ge16\)
=>\(x^2+y^2\ge8\)
Lại có: Áp dụng bất đẳng thức cô-si, ta có:
\(xy\le\left(\frac{x+y}{2}\right)^2\)
=>\(xy\le\left(\frac{4}{2}\right)^2\)
=>\(xy\le2^2\)
=>\(xy\le4\)
=>\(\frac{33}{xy}\ge\frac{33}{4}\)
=>\(x^2+y^2+\frac{33}{xy}\ge8+\frac{33}{4}\)
=>\(P\ge\frac{65}{4}\)
Dấu "=" xảy ra khi: x=y=2
Vậy \(MinP=\frac{65}{4}< =>x=y=2\)
vì sao phải cộng thêm 2
hung: cộng thêm $2$ vào $A$ thì trên tử số sẽ mất $-2xy$ đi và biến $xy$ chỉ còn xuất hiện ở mẫu thôi bạn. Khi đó ta dễ dàng tính toán và xem xét hơn.