Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
\(\Leftrightarrow2\left(1+x+y\right)=2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)
\(\Leftrightarrow2+2x+2y=2\sqrt{x}+2\sqrt{xy}+2\sqrt{y}\)
\(\Leftrightarrow2x+2y+2-2\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\sqrt{y}\\\sqrt{x}=1\\\sqrt{y}=1\end{cases}}\)
\(\Leftrightarrow x=y=1\)
\(\Rightarrow S=x^{2013}+y^{2013}=1+1=2\)
Nhân cả 2 vế của pt đầu với \(x-\sqrt{x^2+2013}\) được:
\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
\(\Rightarrow x+y=\sqrt{x^2+2013}-\sqrt{y^2+3}\left(1\right)\)
Tương tự nhân 2 vế pt đầu với \(y-\sqrt{y^2+2013}\) được:
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(2\left(x+y\right)=0\Rightarrow x+y=0\)
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2103\)
Ta có: \(\hept{\begin{cases}\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)=2013\\\left(y+\sqrt{y^2+2013}\right)\left(\sqrt{y^2+2013}-y\right)=2013\end{cases}}\)
Kết hợp với giả thiết ta có:
\(\hept{\begin{cases}\sqrt{x^2+2013}-x=y+\sqrt{y^2+2013}\\\sqrt{y^2+2013}-y=x+\sqrt{x^2+2013}\end{cases}}\)
Cộng theo vế ta có: \(-x-y=x+y\)
\(\Rightarrow\)\(A=x+y=0\)
\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)
Theo đề bài và (1) => dpcm
b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)
tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)
Cộng 2 vế (2) với (3) => x+y = -x -y
hay 2(x+y) =0 =>S= x+y =0
a) câu a bạn cho 2 cái căn ở cuối làm j thế
hiệu bằng 0 rồi mà?
Ta có\(\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)
Mà \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Rightarrow\sqrt{x^2+2013}-x=y+\sqrt{y^2+2013}\)(1)
Tương tự \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(2)
Lấy (1) - (2) ta được -2x = 2y
<=> 2x + 2y = 0
<=> P = x + y = 0
pt <=> \(\left(\sqrt{x^2+2013}+x\right)\) . \(\left(\sqrt{x^2+2013}-x\right)\). \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> 2013 . \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> \(\sqrt{y^2+2013}+y\)= \(\sqrt{x^2+2013}-x\)
Tương tự : \(\sqrt{x^2+2013}+x\)= \(\sqrt{y^2+2013}-y\)
=> x=-y
=> x+y = 0
Tk mk nha
A = (x+ căn x^2+2013).(y+ căn y^2+2013) =2013
=> (x+ căn x^2+2013) .(x- căn x^2+2013).(y+ căn y^2+2013) phần (x- căn x^2+2013) =2013
=> -2013 . (y+ căn y^2+2013) phần (x+ căn x^2+2013) = 2013
=> -y - (y+ căn y^2+2013 ) = x - (x+ căn x^2+2013) (1)
-x - (x+ căn x^2+2013) = y - (y+ căn y^2+2013) (2)
tu (1) va (2) => x + y = 0