K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+8y^3=0\\x^3-8y^3=0\end{matrix}\right.\Leftrightarrow x=y=0\)

=>A=0

14 tháng 2 2017

Theo bài ra , ta có : 

\(2x^2+2y^2+2x+2y+2xy=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}\Leftrightarrow x=y=-1}\)

Thay x = y = -1 vào A ta được : 

\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)

\(\Leftrightarrow A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1^{2016}+0=1\)

Vậy A=1 

Chúc bạn học tốt =)) 

14 tháng 2 2017

2x2 + 2y2 + 2x + 2y + 2xy = 0

<=> (x+y)2 + (x+1)2 +(y+1)2 = 0

<=> \(\left\{\begin{matrix}\left(x+y\right)^2=0\\\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\) <=> x = y = -1

thay x = y = -1 vào A ta được

(-1 + 2)2016 + (-1 + 1)2017 = 12016 = 1

chúc may mắn!!

13 tháng 10 2019

a) \(xy+x-y=2\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)

b) \(x-2xy+y=0\)

\(\Leftrightarrow2x-4xy+2y=0\)

\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Tương tự nha

13 tháng 10 2019

c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

6 tháng 7 2018

Ta có \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)<=> \(x^3+8y^3=0\)(1)

và \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)<=> \(x^3-8y^3=16\)(2)

Lấy (1) cộng (2)

=> \(2x^3=16\)

<=> \(x^3=8\)

<=> \(x=2\)

Từ (1) <=> \(8y^3=-x^3\)

<=> \(8y^3=-8\)

<=> \(y^3=-1\)

<=> \(y=-1\)

Vậy khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)thì \(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\).

6 tháng 7 2018

\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\Leftrightarrow x^3+8y^3=0\)            (1)

\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\Leftrightarrow x^3-8y^3=16\)        (2)

TỪ (1) => \(x^3=-8y^3\)  thay vào (2) 

=> \(x^3+x^3=16\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

mà \(x^3=-8y^3\Rightarrow y=-1\)

vậy x=2 và y=-1

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

24 tháng 6 2018

a) x2+2y2+2xy-2y+1=0

\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0

\(\Leftrightarrow\)(x+y)2+(y-1)2=0

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy x=-1, y=1

5 tháng 7 2017

Ta có : x2 - 4x + y2 + 2y + 5 = 0

<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0

<=> (x - 2)2 + (y + 1)2 = 0

Mà (x - 2)2 \(\ge0\forall x\)

     (y + 1)2 \(\ge0\forall x\)

Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)

6 tháng 7 2017

còn 2 bài nữa giúp mik đi