K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)

b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)

Tự tìm x,y,z nhé

c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)

(làm tương tự câu b)

d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)

đến đây chắc dễ rồi 

e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)

Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1 

(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x) 

f) 

10 tháng 12 2016

nhìn cái đề thấy loạn cả mắt 

5 tháng 1 2016

áp dụng t/c dãy tỉ số bằng nhau

7 tháng 10 2016

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

7 tháng 10 2016

nè Khoa ơi câu b có đề ko zợ?

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)