Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A.\left(u+v\right)'=u'+v'\Rightarrow Sai\\ B.\left(uv\right)'=u'v+uv'\RightarrowĐúng\\ C.\left(\dfrac{1}{v}\right)'=-\dfrac{v'}{v^2}\Rightarrow Sai\\ D.\left(\dfrac{u}{v}\right)'=\dfrac{u'v-uv'}{v^2}\Rightarrow Sai\)
\(\Rightarrow\) Chọn B
\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\frac{x^2-x-6}{x\left(x-3\right)}=\frac{-6}{0.-3}=+\infty\)
\(\Rightarrow\) Không tồn tại m để hàm số liên tục tại \(x=0\)
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\frac{x^2-x-6}{x\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+2\right)\left(x-3\right)}{x\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{x+2}{x}=\frac{5}{3}\)
\(\Rightarrow\) Để hàm số liên tục tại \(x=3\) thì \(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\Leftrightarrow n=\frac{5}{3}\)
Đặt: \(g(x) = u(x).v(x),\,\,f(x) = g(x).w(x)\)
Ta có:
\(f'(x) = g'(x).w(x) + g(x).w'(x) = \left( {u.v} \right)'.w(x) + (uv).w'(x) = \left( {u'v + uv'} \right).w + (uv).w'\)\( = u'vw + uv'w + uvw'\)
3.
\(SA\perp\left(ABC\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)
\(AB=\sqrt{AC^2+BC^2}=a\sqrt{3}\)
\(tan\widehat{SBA}=\frac{SA}{AB}=\frac{1}{\sqrt{3}}\Rightarrow\widehat{SBA}=30^0\)
4.
\(f'\left(x\right)=\frac{\left(x^2+3\right)'}{2\sqrt{x^2+3}}=\frac{x}{\sqrt{x^2+3}}\) \(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=2\\f'\left(1\right)=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow S=2+4.\frac{1}{2}=4\)
5.
Hàm \(y=\frac{3}{x^2+2}\) xác định và liên tục trên R
6.
\(\left\{{}\begin{matrix}k_1=f'\left(2\right)\\k_2=g'\left(2\right)\\k_3=\frac{f'\left(2\right).g\left(2\right)-g'\left(2\right).f\left(2\right)}{g^2\left(2\right)}\end{matrix}\right.\) \(\Rightarrow k_3=\frac{k_1.g\left(2\right)-k_2.f\left(2\right)}{g^2\left(2\right)}\Rightarrow\frac{1}{2}=\frac{g\left(2\right)-f\left(2\right)}{g^2\left(2\right)}\)
\(\Leftrightarrow g^2\left(2\right)=2g\left(2\right)-2f\left(2\right)\)
\(\Leftrightarrow1-2f\left(2\right)=\left[g\left(2\right)-1\right]^2\ge0\)
\(\Rightarrow2f\left(2\right)\le1\Rightarrow f\left(2\right)\le\frac{1}{2}\)
1.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow d\left(C;\left(SAB\right)\right)=BC\)
\(BC=\sqrt{AC^2-AB^2}=a\)
2.
Qua S kẻ đường thẳng d song song AD
Kéo dài AM cắt d tại E \(\Rightarrow SADE\) là hình chữ nhật
\(\Rightarrow DE//SA\Rightarrow ED\perp\left(ABCD\right)\)
\(SBCE\) cũng là hcn \(\Rightarrow SB//CE\Rightarrow SB//\left(ACM\right)\Rightarrow d\left(SB;\left(ACM\right)\right)=d\left(B;\left(ACM\right)\right)\)
Gọi O là tâm đáy, BD cắt (ACM) tại O, mà \(BO=DO\)
\(\Rightarrow d\left(B;\left(ACM\right)\right)=d\left(D;\left(ACM\right)\right)\)
\(\left\{{}\begin{matrix}AC\perp BD\\AC\perp ED\end{matrix}\right.\) \(\Rightarrow AC\perp\left(BDE\right)\)
Từ D kẻ \(DH\perp OE\Rightarrow DH\perp\left(ACM\right)\Rightarrow DH=d\left(D;\left(ACM\right)\right)\)
\(BD=a\sqrt{2}\Rightarrow OD=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\) ; \(ED=SA=2a\)
\(\frac{1}{DH^2}=\frac{1}{DO^2}+\frac{1}{ED^2}=\frac{9}{4a^2}\Rightarrow DH=\frac{2a}{3}\)
Vậy thì bạn phải biết đọc đường tròn lượng giác
Mà đừng hỏi mình đọc đường tròn lượng giác thế nào nhé, cái đấy SGK viết rất rõ rồi
Phát biểu C đúng.