Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)
Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)
\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Hiện tại TK dc: 10.30%.12=36 trd
lương năm sau tăng 5%: 10.105%=10,5trd
năm sau TK dc: 10,5.30%.12=37,8trd
2 năm tk dc: 36+37,8=73,8 trd
a) Ta có: \(\frac{\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{2+\sqrt{4+2\sqrt{3}}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2+\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2+\left|\sqrt{3}+1\right|}{2-\left|\sqrt{3}-1\right|}\)
\(=\frac{2+\sqrt{3}+1}{2-\sqrt{3}+1}\)(Vì \(\sqrt{3}>1>0\))
\(=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(a=\frac{2+\sqrt{4+2\sqrt{3}}}{2-\sqrt{4-2\sqrt{3}}}=\frac{2+\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{2+\sqrt{3}+1}{2-\sqrt{3}+1}=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{\left(3+\sqrt{3}\right)^2}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)
\(=\frac{12+6\sqrt{3}}{6}=2+\sqrt{3}\)
Xét \(A=\sqrt{3+\sqrt{7}}+\sqrt{3-\sqrt{7}}>0\)
\(A^2=6+2\sqrt{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}=6+2\sqrt{2}\)
\(\Rightarrow A=\sqrt{6+2\sqrt{2}}\)
\(\Rightarrow\sqrt{3+\sqrt{7}}+\sqrt{3-\sqrt{7}}-\sqrt{6+2\sqrt{2}}=\sqrt{6+2\sqrt{2}}-\sqrt{6+2\sqrt{2}}=0\)
Bài 2:
gọi thời gian chảy riêng từng vòi đầy bể lần lượt là x(giờ) và y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1h, vòi thứ nhất chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1h, vòi thứ hai chảy được \(\dfrac{1}{y}\left(bể\right)\)
TRong 1h, hai vòi chảy được \(\dfrac{1}{4}\left(bể\right)\)
=>\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)
Trong 10h, vòi thứ nhất chảy được \(\dfrac{10}{x}\left(bể\right)\)
Nếu mở vòi thứ nhất chảy trong 10 giờ rồi khóa lại và mở vòi thứ hai chảy trong 1 giờ nữa thì đầy bể nên ta có:
\(\dfrac{10}{x}+\dfrac{1}{y}=1\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{10}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{x}=-\dfrac{3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=12\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{2}{12}=\dfrac{1}{6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian để vòi một chảy một mình đầy bể là 12 giờ
Thời gian để vòi thứ hai chảy một mình đầy bể là 6 giờ
Câu 19:
19.1
Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\cdot180^0=90^0\)
19.2 CM+MD=DC
mà CM=CA
và MD=DB
nên DC=CA+BD
19.3
Xét ΔCOD vuông tại O có OM là đường cao
nên \(OM^2=MC\cdot MD\)
\(\Leftrightarrow R^2=AC\cdot BD\)
Vậy: Tích ACxBD không đổi