K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNP có

E là trung điểm của MN

F là trung điểm của NP

Do đó: EF là đường trung bình của ΔMNP

Suy ra: EF//MP và EF=MP/2(1)

Xét ΔMQP có

K là trung điểm của MQ

H là trung điểm của QP

Do đó: KH là đường trung bình của ΔMQP

Suy ra: KH//MP và KH=MP/2(2)

Xét ΔMNQ có

E là trung điểm của MN

K là trung điểm của MQ

Do đó: EK là đường trung bình của ΔMNQ

Suy ra: EK=NQ/2=MP/2(3)

Từ (2) và (3) suy ra KH=EK(4)

Từ (1) và (2) suy ra EF//KH và EF=KH(5)

Từ (4) và (5) suy ra EFHK là hình thoi

25 tháng 10 2017

Chọn A

30 tháng 12 2021

chọn B

 

30 tháng 11 2018

Bạn tự vẽ hình nha
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT ) 
=> DE là đường trung bình của tam giác MNP
=> DE = NP/2 (1)
CMTT :  DG = MQ/2 (2)
        và FG = NP/2 (3)
        và EF =MQ/2 (4)
Từ (1), (2), (3), (4), Mà NP = MQ ( GT )
=> DE = EF = FG= GD
Xét tứ giác DEFG có :
DE = EF = FG= GD ( CMT )
=> DEFG là hình thoi
Vậy  DEFG là hình thoi

Bạn tự vẽ hình nha
Câu b)
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT ) 
=> DE là đường trung bình của tam giác MNP
=> DE // NP
CMTT : DG // MQ
Để hình thoi DEFG là hình vuông
<=> góc GDE = 90 độ
<=> GD vuông góc DE
Ta có :  DE // NP ( CMT )
      và   DG// MQ ( CMT )
Để GD vuông góc DE
<=> MQ vuông góc NP
Vậy tứ giác MNPQ có NP = MQ, NP vuông góc MQ thì tứ giác DEFG là hình vuông 

20 tháng 7 2021

Tham khảo nhéundefined

a: Xét ΔMNP có

H là trung điểm của MN

I là trung điểm của MP

Do đó: HI là đường trung bình

=>HI//NP và HI=NP/2(1)

Xét ΔPQN có

J là trung điểm của PQ

K là trung điểm của QN

Do đó: JK là đường trung bình

=>JK//PN và JK=PN/2(2)

Từ (1) và (2) suy ra HI//KJ và HI=KJ

hay HKJI là hình bình hành

b: Để HKJI là hình thoi thì HJ⊥KI

hay MP⊥NQ

25 tháng 11 2018

a) Xét tam giác QMN có :

A là trung điểm của MN

B là trung điểm của MQ

=) AB là đường trung bình của tam giác QMN

=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)

Xét tam giác QPN có :

C là trung điểm của QP

D là trung điểm của NP

=) CD là đường trung bình của tam giác QPN

=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)

Từ (*) và (**) =) Tứ giác ABCD là hình bình hành  (1)

Xét tam giác MQP có :

B là trung điểm của MQ

C là trung điểm của QP

=) BC là đường trung bình của tam giác MQP

=) BC // MP

Do MNPQ là hình thoi =) MP\(\perp\)NQ

Mà BC // MP và AB // NQ

=) BC\(\perp\)AB   (2)

Từ (1) và (2) =) ABCD là hình chữ nhật

b) Ta có : MQ=QP

Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)

Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)

=) QB=QC

Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)

=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)

Xét tam giác QMN có:

MQ=MQ và \(\widehat{QMN}\)=600

=) QMN là tam giác đều

Xét tam giác MQN có :

NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)

=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300

Xét tam giác QBN và tam giác QCN có :

QB=QC ( chứng minh trên )

\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )

QN là cạch chung

=) tam giác QBN = tam giác QCN (c-g-c)

=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )

=) Tam giác BNC là tam giác cân tại N (3)

Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)

       =) 300 +300 =\(\widehat{BNC}\)

      =) \(\widehat{BNC}\)=600  (4)

Từ (3) và (4) =) Tam giác BNC là tam giác đều