K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

khó waaaaaaaaaaaaaaaaa

25 tháng 7 2016

bài zì mà khó quá đi àaaaaaaaaaaaaaaaa

19 tháng 11 2015

Ta co:IA =IB(gt) ; HA =HC(gt)

Suy ra:HI la` đg tb của tam giac ABC

Suy ra:IH =1/2BC ;IH//BC (1)

Trong tam giac BDC co:KD =KB(gt) ;JD =JC(gt)

Suy ra :KJ la đg tb cu`a tam giac BDC

Suy ra :KJ =1/2BC ;KJ//BC (2)

Tu (1) va (2) suy ra :KJ = IH ;KJ // IH

Suy ra :tu giac KIHJ la hinh binh hanh(2 canh doi song song va bang nhau)(*)

Trong tam giac ADC co:HA =HC(gt) ;JD = JC(gt)

Suy ra :HJ la đg tb của tam giac ADC

Suy ra :HJ = 1/2AD

Mà AD =BC(gt) ; HI = 1/2BC(c/m tren)

Suy ra :HJ = HI (**)

Tu (*) va (**) suy ra tu giac KIHJ la hinh thoi (hbh co 2 canh ke bang nhau)

Suy ra :IJ  vuong goc voi KH . . . . A B C D K H I J

a. Dễ thấy AEM F là hình chữ nhật => AE = FM 
Dễ thấy tg DFM vuông cân tại F => FM = DF 
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF 
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

18 tháng 8 2017

a. Dễ thấy AEM F là hình chữ nhật => AE = FM 
Dễ thấy tg DFM vuông cân tại F => FM = DF 
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF 
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD