Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:IA =IB(gt) ; HA =HC(gt)
Suy ra:HI la` đg tb của tam giac ABC
Suy ra:IH =1/2BC ;IH//BC (1)
Trong tam giac BDC co:KD =KB(gt) ;JD =JC(gt)
Suy ra :KJ la đg tb cu`a tam giac BDC
Suy ra :KJ =1/2BC ;KJ//BC (2)
Tu (1) va (2) suy ra :KJ = IH ;KJ // IH
Suy ra :tu giac KIHJ la hinh binh hanh(2 canh doi song song va bang nhau)(*)
Trong tam giac ADC co:HA =HC(gt) ;JD = JC(gt)
Suy ra :HJ la đg tb của tam giac ADC
Suy ra :HJ = 1/2AD
Mà AD =BC(gt) ; HI = 1/2BC(c/m tren)
Suy ra :HJ = HI (**)
Tu (*) va (**) suy ra tu giac KIHJ la hinh thoi (hbh co 2 canh ke bang nhau)
Suy ra :IJ vuong goc voi KH . . . . A B C D K H I J
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD