K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Lê Cảnh Bảo Long bn tham khảo nha:

a, Chứng minh rằng trong một tứ giác, mỗi đường chéo lớn hơn nửa chu vi tứ giác đó . 
Phải là: mỗi đường chéo nhỏ hơn nửa chu vi tứ giác đó 

cho tứ giác ABCD ta có AC< AB + BC (1) ( trong tam giác tổng 2 cạnh lớn hơn cạnh thứ 3) 
và AC<AD+DC (2) (như trên) , cộng hai bất đẳng thức cùng chiều (1) và (2) 
=>2AC < AB + BC + AD + DC = 2p => AC<p chứng minh tương tự ta cũng có BD < p 

b, Chứng minh rằng trong một tứ giác, tổng hai đường chéo 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

28 tháng 9 2017

. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

GH
18 tháng 7 2023

Bài 1:

a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

 

Bài 3:

Tứ giác ABCD có góc C + góc D = 90 độ . Chứng minh rằng AC^2 + BD^2 = AB^2 + CD^2 (ảnh 1)

Gọi O là giao điểm AD và BC.

Ta có ˆC+D=900�^+�⏜=900 nên ˆO=900�^=900

Áp dụng định lí Py – ta – go,

Ta có 

AC2=OA2+OC2.��2=��2+��2.

BD2=OB2+OD2��2=��2+��2

Nên AC2+BD2=(OA2+OB2)+(OC2+OD2)=AB2+CD2

15 tháng 7 2023

Bài 1: loading...

Gọi E là giao điểm của hai đường chéo AC và BD 

Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC 

                                  (AE + CE) + (BE + DE) > AB + DC

                                     AC + BD > AB + DC 

Tương tự ta có AC + BD > AD + BC 

Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.

Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)

Theo chứng minh trên ta có:

 \(\dfrac{AB+BC+CD+DA}{2}\)\(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)

Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:

AB + AD > BD 

AB + BC > AC

BC + CD > BD 

CD + AD > AC 

Cộng vế với vế ta có:

(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2

⇒AB + BC + CD + DA > BD + AC  (2)

Kết hợp (1) và (2) ta có:

Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác

 

 

 

15 tháng 8 2016

 Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó: 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

15 tháng 8 2016

Bạn tham khảo ở đây : 

/hoi-dap/question/76098.html

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Theo cách đặt giao của AC, BD là O của bạn Khôi thì phần 1 có thể CM như sau:

Áp dụng công thức BĐT trong tam giác thì:

\(AD< AO+OD\)

\(BC< BO+OC\)

Cộng theo vế 2 BĐT trên:

\(AD+BC< AO+CO+BO+DO=AC+BD\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Còn đoạn "Theo câu 1 thì AC < p và BD < p$ là không có cơ sở em nhé.