K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc HKA+góc HFA=180 độ

=>HKAF là tứ giác nộitiếp

b: góc EIK>góc KIA=góc KEA

a: góc HKA+góc HFA=180 độ

=>HKAF là tứ giác nộitiếp

b: góc EIK>góc KIA=góc KEA

Sửa đề: Hai đường chéo BD và AC cắt nhau tại E

góc ACD=1/2*sđ cung AD=90 độ

góc EFD+góc ECD=180 độ

=>EFDC nội tiếp

7 tháng 2 2020

a, xét (O) có gBAD nội tiếp đường tròn 

=>gBAD=90độ=> EA vuông góc FD

gBCD nội tiếp đường tròn 

=>gBCD=90độ => FC vuông góc DE

xét tgDEF có EA là đường cao

                     FC là đương cao

                    EA cắt FC tại B

=> B là trực tâm của tg

=>DB là đường cao

=> DB vuông góc EF

b,xét tgABF và tgCBE có gBAF=gBCE = 90độ

                                        gABF=gCBE (hai góc đối đỉnh)

=> tgABF ~ tgCBE (g.g)

=> BA/BC= BF/BE

=>BA.BE=BC.BF

c, bn xem lại giùm mk điểm H là điểm nào

17 tháng 12 2023

a: Xét tứ giác MNBD có

\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)

=>MNBD là tứ giác nội tiếp

=>\(\widehat{NBD}+\widehat{NMD}=180^0\)

mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)

nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)

=>\(\widehat{NMA}=\widehat{CMA}\)

=>MA là phân giác của góc NMC

b: Ta có: NBDM là tứ giác nội tiếp

=>\(\widehat{DBM}=\widehat{DNM}\)

=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MAC}\) là góc nội tiếp chắn cung MC

Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)

=>\(\widehat{ENM}=\widehat{EAM}\)

=>ANME là tứ giác nội tiếp

=>\(\widehat{AEM}+\widehat{ANM}=180^0\)

=>\(\widehat{AEM}=90^0\)

=>ME\(\perp\)AC