Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
con lợn và con chó nặng 102kg,con lợn và con bò nặng 231kg ,con chó và con bò nặng 177 kg .Trung bình mỗi con nặng bao nhiêu kg?
Ta có: Sabm = Samc ( chung đường cao, đáy bằng nhau)
Sadn = Sanc (chung đường cao, đáy bằng nhau)
=> Sabcd = 2Samcn
Mặt khác: Samn > Smnc => Samcn < 2Samn
Samn = 1/2(AM.AN. SinA) < 1/2(AM.AN) <= 1/2 . (AM + NA)^2/4 = (Am+AN)^2 / 8 (cô si)
=> Sabcd < 4. (am+an)^2 / 8 = 1/2 (am+an)^2
A B C D O a^2 b^2 M N
(Hình ảnh chỉ mang tính chất minh họa)
a) Kẻ DM và CN vuông góc với AB
=> MN = CD (Theo cách vẽ)
=> DC - AB = MN - AB = MA + BN
=> DC - AB = MA + BN
Tam giác vuông MAD và NBC vuông lần lượt tại M,N
=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)
=> DC - AB = MA + BN < AD + BC (ĐPCM
a) Xét hai tam giác \(\Delta ABE\&\Delta ADF\) là hai tam giác vuông có \(\angle ADF=\angle ABE\to\Delta ABE\sim\Delta ADF\) (cạnh huyền góc nhọn). Suy ra \(\frac{AE}{AF}=\frac{AB}{AD}.\) (Bạn ghi nhầm thành \(\frac{AB}{BD}\) nhé).
b) Vì M là trung điểm AB nên \(S_{AMC}=S_{BMC}\to S_{AMC}=\frac{1}{2}S_{ABC}.\)
Tương tự, vì N là trung điểm AD nên \(S_{ACN}=S_{CDN}\to S_{ACN}=\frac{1}{2}S_{ACD}.\)
Vậy \(S_{AMCN}=S_{AMC}+S_{ACN}=\frac{1}{2}S_{ABC}+\frac{1}{2}S_{ACD}=\frac{1}{2}S_{ABCD}\). (ĐPCM)
Vẽ đường cao AH của \(\Delta\)ABC
Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)
Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC
Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)
\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)
\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)
Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:
\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)
Do đó:
\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)
Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)