K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O...
Đọc tiếp

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.

A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .

Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng

A. HA CD  và AD CH  .

B. HA CD  và DA HC  .

C. HA CD  và AD HC  .

D. HA CD  và AD HC  và OB OD  .

Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng

A. 1. B. 2. C. 2. D. 3.

Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm   4 , 3 . Độ dài của vectơ AB là

A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm

Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng

A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a

Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB  . Độ dài vectơ AC là

A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c

0
31 tháng 10 2019

Đáp án A

Chọn hệ trục Oxy  sao cho Ox trùng với AB , chiều dương hướng từ A đến B ,trục Oy là đường trung trực của đoạn AB =>

  

Phương trình đường tròn tâm D  qua A; B là:

Giả sử M(a;b) là điểm bất kì trên đường tròn  .Ta có :

MA2= (a+ 1) 2+ b2

MB2= (a-1) 2+ b2

+ M nằm trên đường tròn (1)  nên : 

=> MA2+ MB2= MC2

 => MA; MB; MC là độ dài ba cạnh của một tam giác vuông.

30 tháng 3 2019

*Xét  tam giác ABC có M; N  là trung điểm của AB, BC nên MN là đường trung bình của tam giác.

⇒ M N / / A C ;     M N = 1 2 A C   ( 1 )

* Xét  tam giác ADC có P; Q  là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.

⇒ P Q / / A C ;     P Q = 1 2 A C   ( 2 )

* Từ (1) (2)  suy  ra  PQ// MN;  PQ = MN.  Do đó, tứ giác MNPQ là hình bình hành.

* Mà O là giao điểm của hình bình hành MNPQ nên O là trung điểm MP

* Xét tam giác ABC có MI là đường trung bình nên:  M I / / B C ;    M I = 1 2 ​ B C   ( 3 )

* Xét tam giác BCD có PJ là đường trung bình của các tam giác nên:  P J / / B C ;    P J = 1 2 ​ B C   ( 4 )

Từ (3) ( 4) suy ra ;  tứ giác  MIPJ là hình bình hành. Mà O là trung điểm MP nên  điểm O là trung điểm của đoạn thẳng IJ. Từ đó ta có  O I →   =   - O J →

Đáp án D

30 tháng 6 2019

a,vì N là trung điểm AC nên 2BN=BA+BC ta có

MA+NB+PC=1/2BA+1/2BC+NB=1/2 (BA+BC)+NB=1/2×2×BN+NB=BN+NB=0 (TM đề bài )

b, vì M;N;P làtrung điểm AB;AC;BC

2OM+2ON+2OP=OA+OB+OA+OC+OB+OC

=2OA+2OB+2OC

suy ra OM+ON+OP=OA+OB+OC

c,

Cm tương tự

2OB=OB'+OC

2OA=OA'+OB

2OC=OA+OC'

suy ra

2OA+2OB+2OC=OA+OB+OC+OA'+OB'+OC'

suy ra OA+OB+OC=OA'+OB'+OC'