K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 9 2018

Lời giải:

Ta có:
\(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA}=(\overrightarrow{FA}+\overrightarrow{AI})+(\overrightarrow{DA}+\overrightarrow{AB})\)

\(=\overrightarrow{FI}+\overrightarrow{DB}(1)\)

Vì $I,F$ lần lượt là trung điểm của $BC,CD$ nên $FI$ là đường trung bình của tam giác $DBC$

\(\Rightarrow FI\parallel DB, FI=\frac{1}{2}DB\)

\(\Rightarrow \overrightarrow{FI}=\frac{1}{2}\overrightarrow{DB}(2)\)

Từ \((1);(2)\Rightarrow \overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA}=\frac{1}{2}\overrightarrow{DB}+\overrightarrow{DB}=\frac{3}{2}\overrightarrow{DB}\)

\(\Rightarrow 2(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA})=3\overrightarrow{DB}\) (đpcm)

1 tháng 9 2018

cho em hỏi sao ra vecto FA + vecto AI vậy ạ

25 tháng 8 2018

Bài 1.3 (STB trang 12)Cho tứ giác ABCD. Gọi M, N, P và Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh NP−→−=MQ−→−NP→=MQ→\overrightarrow{NP}=\overrightarrow{MQ} và PQ−→−=NM−→−PQ→=NM→\overrightarrow{PQ}=\overrightarrow{NM} ?

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Xét ΔDFC có

N là trung điểm của DC
NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(1)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(2)

Từ(1) và (2) suy ra vecto DE=vecto EF=vecto FB

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JC}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(1)

ta có : \(\overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JD}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JC}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(2)

từ (1) (2) ta có \(2\overrightarrow{IJ}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\left(đpcm\right)\)

c) ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

\(2\overrightarrow{OI}+2\overrightarrow{OJ}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OI}+\overrightarrow{OJ}=\overrightarrow{0}\)

\(\Rightarrow O\) là trung điểm \(IJ\)

23 tháng 7 2018

a) áp dụng định lí ta lét ta có : \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{BC}\) \(\Rightarrow\left|\overrightarrow{MN}\right|=\left|\dfrac{1}{2}\overrightarrow{BC}\right|=\dfrac{1}{2}BC=\dfrac{1}{2}a\)

b) các vectơ đối của \(\overrightarrow{AM}\) là : \(\overrightarrow{AM}\)\(\overrightarrow{BM}\)

c) ta có : \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}\) \(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|=AD\)

ta có : \(AD=2AE\) (với \(E\) là giao điểm \(AD\)\(BC\) )

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2AE=2\left(AB^2-BE^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)d) ta có : \(\overrightarrow{AB}-\overrightarrow{AI}=\overrightarrow{IB}\) \(\Rightarrow\left|\overrightarrow{AB}-\overrightarrow{AI}\right|=\left|\overrightarrow{IB}\right|=IB\)

câu này bn xem lại đề nha

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AP}+\overrightarrow{PQ}+\overrightarrow{QB}+\overrightarrow{DP}+\overrightarrow{PQ}+\overrightarrow{QC}\)

\(=2\overrightarrow{PQ}+\left(\overrightarrow{AP}+\overrightarrow{DP}\right)+\left(\overrightarrow{QB}+\overrightarrow{QC}\right)=2\overrightarrow{PQ}\) ..................(1)

\(\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{AC}+\overrightarrow{DB}=\overrightarrow{AP}+\overrightarrow{PQ}+\overrightarrow{QC}+\overrightarrow{DP}+\overrightarrow{PQ}+\overrightarrow{QB}\)

\(=2\overrightarrow{PQ}+\left(\overrightarrow{AP}+\overrightarrow{DP}\right)+\left(\overrightarrow{QB}+\overrightarrow{QC}\right)=2\overrightarrow{PQ}\) ..................(2)

từ (1) (2) ta có : \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{PQ}\left(đpcm\right)\)