K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

a)      nối A với C ,  B với D được:

EF // AC ( đường trung bình của tam giác BAC)

HG // AC ( "         "          "          "        "          "       ) suy ra EF // AC  do cùng // AC

HE // DB ( đường trung bình tam giác ADB  )

FG // DB ( "     "           "         "         "         "        ) suy ra HE // FG  do cùng // với DB

Xét tứ giác EFGH có 2 cặp cạnh đối song song  nên EFGH là hình bình hành

b)  EFGH là hình ....

Thoi , suy ra EH = GH  nên AC=BD  ( do là đường trung bình của hai tam giác ADB,ADC)

vì AC = BD nên ABCD là hình thang cân

Chữ nhật, suy ra HE vuông góc với HG  nên AC vuông góc với  BD

Hình vuông   ,   kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.

Tích nha☺

 

6 tháng 11 2021

E, F lần lượt là trung điểm của AB và BC (gt)

\(\Rightarrow\) EF là đường trung bình của tam giác ABC

\(\Rightarrow\) EF // AC và EF = \(\frac{1}{2}\) AC (1)

H, G lần lượt là trung điểm của AD và DC (gt)


\(\Rightarrow\) HG là đường trung bình của tam giác ACD

\(\Rightarrow\) HG // AC và HG = \(\frac{1}{2}\) AC (2)

Từ (1) và (2) \(\Rightarrow\) EF // HG và EF = HG

\(\Rightarrow\) Tứ giác EFGH là hình bình hành

Tứ giác EFGH là hình bình hành. EF // AC, EF = \(\frac{1}{2}\) AC 

Ta còn có EH là đường trung bình của tam giác ABD

\(\Rightarrow\) EH // BD và EH = \(\frac{1}{2}\) BD

- Tứ giác EFGH là hình chữ nhật

\(\Leftrightarrow\) Hình bình hành EFGH có: 

\(\widehat{HEF}=90^o\)

\(\Leftrightarrow HE\perp EF\)

\(\Leftrightarrow EH\perp AC\)

\(\Leftrightarrow AC\perp BD\)

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc với nhau thì tứ giác EFGH là hình chữ nhật

- Tứ giác EFGH là hình thoi

\(\Leftrightarrow\) Hình bình hành EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD bằng nhau thì tứ giác EFGH là hình thoi

- Tứ giác EFGH là hình vuông

\(\Leftrightarrow\) Hình chữ nhật EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc và bằng nhau thì tứ giác EFGH là hình vuông

G C D H A E B F Yen Nhi

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

21 tháng 12 2018

giúp mình với sắp thi rồi

29 tháng 7 2016

A B C D E F G H

Xét \(\Delta ADB\):

\(AE=EB\left(gt\right)\)

\(HD=HA\left(gt\right)\)

\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).

\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)

Xét \(\Delta CDB:\)

\(FB=FC\left(gt\right)\)

\(GC=GD\left(gt\right)\)

\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).

\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)

Vậy tứ giác \(EFGH\)là hình bình hành.

b) Xét \(\Delta AEH\)và \(\Delta EBF\):

\(AE=EB\left(gt\right)\)

Góc A = Góc B = 90o (ABCD là hình chữ nhật)

\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)

\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)

\(\Rightarrow HE=HF\)

mà tứ giác EFGH là hình bình hành.

Vậy hình bình hành \(EFGH\)là hình thoi.

3 tháng 9 2017

Ta cm theo qui tắc đường trung bình của tam giác là ra ngay 
Ta có E là trung điểm của AB,F là trung điểm của BC>>>EF=1/2AC.tuơng tự HG=1/2 AC>>>EF=HG 
CM ttự với cặp còn lại là ra thôi