K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

EF là đg trung bình ứng cạnh DC của tam giác ADC => EF= CD/2 tất nhiên < (AB+CD)/2

B C A D M N E E

Trên ta BN lấy điểm E sao cho N là trung điểm của BE .

\(\Delta NBC\)và \(\Delta NED\) có :

NC = ND ( gt ) 

\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )

NB = NE ( theo cách vẽ ) .

Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .

Theo giả thiết  MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\)                 (1) 

Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\).            (2)

Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .

Lại do \(\Delta NBC\)\(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.

Vậy tứ giác ABCD là hình thang ( đpcm ).

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.