K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2020

image

image

Bạn vào thống kê hỏi đáp của mình để xem lời giải nhé !

\(\widehat{EIF}=\frac{\widehat{A}+\widehat{C}}{2}=\frac{180^o}{2}=90^o\)  (ĐPCM)

27 tháng 7 2017

gọi góc trong của a là a1, ngoài là a2, b cũng vậy nhé bạn.

a)xét tam giác aeb ta có :\(\frac{a1}{2}\) +\(\frac{b1}{2}\)+ e = 180

=> e= 180-(\(\frac{a1}{2}+\frac{b1}{2}\)

ta có a1+ b1= 360 -(c+d) 

=> e = 180 - (\(\frac{360-\left(c+d\right)}{2}\)) = \(\frac{c+d}{2}=>e=\frac{1}{2}\left(c+d\right)\)

b) ta có fab đối đỉnh \(\frac{a2}{2}\) và fba đối đỉnh \(\frac{b2}{2}\) 

trong tam giác afb có fab + fba + j = 180

=> j = 180- ( \(\frac{a2}{2}+\frac{b2}{2}\) ) mà 360- (a1+b1)= a2+b2

=> j = 180 - \(\left(\frac{360-\left(a1+b1\right)}{2}\right)\) = \(\frac{a1+B1}{2}\)

vậy j = \(\frac{1}{2}\left(a1+b1\right)\)

7 tháng 11 2017

E A D C B G H I K F O

b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.

7 tháng 11 2017

Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn